검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the effects of Yb2O3 and calcium aluminosilicate (CAS) glass as sintering additives on the sintering behavior of AlN. The AlN specimens are sintered at temperatures between 1700oC and 1900oC for 2 h in a nitrogen atmosphere. When the Yb2O3 content is low (within 3 wt.%), an isolated shape of secondary phase is observed at the AlN grain boundary. In contrast, when 3 wt.% Yb2O3 and 1 wt.% CAS glass are added, a continuous secondary phase is formed at the AlN grain boundary. The thermal conductivity decreases when the CAS glass is added, but the sintering density does not decrease. In particular, when 10 wt.% Yb2O3 and 1 wt.% CAS glass are added to AlN, the flexural strength is the highest, at 463 MPa. These results are considered to be influenced by changes in the microstructure of the secondary phase of AlN.
        4,000원
        3.
        2020.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        건축 및 토목 구조물의 대표 재료인 콘크리트의 핵심지표인 구조 성능을 개선하기 위해 많은 연구가 진행되고 있다. 아울러 구조물의 크기가 커질수록 강도가 높은 고기능 콘크리트의 필요성이 높아지고 있으며, 특히 내구성과 내후성이 우수한 콘크리트 재료의 개발이 필요한 실정이다. 따라서, 본 연구에서는 강섬유와 함께 파라-아라미드 원사를 이용하여 피복 및 꼬임, 원사 데니어 및 섬유 길이에 대한 차별화된 원사가공을 적용한 복합재료인 슈퍼섬유를 콘크리트에 혼입하여 구조적인 성능을 평가하고자 하였다. 본 연구를 통해 최적화된 슈퍼 섬유로 보강된 슈퍼 콘크리트는 도로, 교량, 상수도 및 하수도 등 기존 SOC 의 수리 및 보강에 적용될 유망한 성장 기술 분야가 될 것으로 예상된다.
        4,000원
        4.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO crystals with different morphologies are synthesized through thermal evaporation of the mixture of Zn and Cu powder in air at atmospheric pressure. ZnO crystals with wire shape are synthesized when the process is performed at 1,000 oC, while tetrapod-shaped ZnO crystals begin to form at 1,100 oC. The wire-shaped ZnO crystals form even at 1,000 oC, indicating that Cu acts as a reducing agent. As the temperature increases to 1,200 oC, a large quantity of tetrapod-shaped ZnO crystals form and their size also increases. In addition to the tetrapods, rod-shaped ZnO crystals are observed. The atomic ratio of Zn and O in the ZnO crystals is approximately 1:1 with an increasing process temperature from 1,000 oC to 1,200 oC. For the ZnO crystals synthesized at 1,000 oC, no luminescence spectrum is observed. A weak visible luminescence is detected for the ZnO crystals prepared at 1,100 oC. Ultraviolet and visible luminescence peaks with strong intensities are observed in the luminescence spectrum of the ZnO crystals formed at 1,200 oC.
        4,000원
        5.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Morphological differences in multi-layered graphene flakes or graphene nanoplatelets prepared by oxidative (rGO-NP, reduced graphene oxide-nanoplatelets) and non-oxidative (GIC-NP, graphite intercalation compound-nanoplatelets) routes were investigated with various analytical methods. Both types of NPs have similar specific surface areas but very different structural differences. Therefore, this study proposes an effective and simple method to identify structural differences in graphene-like allotropes. The adsorptive potential peaks of rGO-NP attained by the density functional theory method were found to be more scattered over the basal and non-basal regions than those of GIC-NP. Raman spectra and high resolution TEM images showed more distinctive crystallographic defects in the rGO-NP than in the GIC-NP. Because the R-ratio values of the edge and basal plane of the sample were maintained and relatively similar in the rGO-NP (0.944 for edge & 1.026 for basal), the discrepancy between those values in the GIC-NP were found to be much greater (0.918 for edge & 0.164 for basal). The electrical conductivity results showed a remarkable gap between the rGO-NP and GIC-NP attributed to their inherent morphological and crystallographic properties.
        4,000원
        6.
        2017.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The relationship of in vitro starch digestibility and gel strength was investigated at various concentrations (10-30%) of rice cultivars with different amylose contents (27.9, 17.9, and 5.2%). As the rice flour concentration increased, predicted glycemic index decreased, but gel strength increased regardless of amylose contents. Gel strength correlated strongly with amylose content, whereas in vitro starch digestibility was more highly affected by rice flour concentration than by amylose contents. Moreover, the impact of degree of gelatinization on in vitro starch digestibility of high amylose rice was also examined in terms of structural features and rheological properties. The digestion rate of fully gelatinized flour was 1.7 times higher than that of native flour, while the disrupted structure with a different gelatinization degree during starch digestion was visually demonstrated through the X-ray diffraction and molecular distribution analysis. The rice flour changed from an A-type to a V-type pattern and showed difference in crystalline melting. The low molecular weight distribution increased with increasing degree of gelatinization during starch digestion. The apparent viscosity also increased with degree of gelatinization. These results demonstrated that the starch digestibility of rice was more affected by concentration than by amylose content, as well as by the degree of gelatinization due to structural difference.
        4,000원
        7.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO micro/nanocrystals with different morphologies were synthesized by thermal evaporation of various zinc source materials in an air atmosphere. Zinc acetate, zinc carbonate and zinc iodide were used as the source materials. No catalysts or substrates were used in the synthesis of the ZnO crystals. The scanning electron microscope(SEM) image showed that the morphology of ZnO crystals was strongly dependent on the source materials, which suggests that source material is one of the key factors in controlling the morphology of the obtained ZnO crystals. Tetrapods, nanogranular shaped crystals, spherical particles and crayon-shaped crystals were obtained using different source materials. The X-ray diffraction(XRD) pattern revealed that the all the ZnO crystals had hexagonal wurtzite crystalline structures. An ultraviolet emission was observed in the cathodoluminescence spectrum of the ZnO crystals prepared via thermal evaporation of Zn powder. However, a strong green emission centered at around 500 nm was observed in the cathodoluminescence spectra of the ZnO crystals prepared using zinc salts as the source materials.
        3,000원
        8.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Morphological properties of dark banded rockfish (Sebastes inermis) were analysed to investigate its acoustic scattering characteristics. Total of 18 live samples was prepared for X-ray photos and collected morphological coordinates of their body and swim bladder shapes. Kirchhoff-ray mode model was used to calculate acoustic scattering pattern for broad-band frequency range. Inclination of swim bladder ranged from 17 to 30 and the averaged value was about 25.2° (S.D.(standard deviation)=3.15). There were no any tendency of increase or decrease in volume and area ratio of swim bladder to fish body and ranged from 2.2 % to 4.43 % and 14.85 % to 21.31 %, respectively. The averaged value of volume and area ratio was 3.13 % (S.D.=0.52) and 17.6 % (S.D.=1.5). b20 values were –69.01 for 38 kHz, –69.83 for 70 kHz, –70.17 for 120 kHz and -70.93 for 200 kHz, recpectively. Broadband acoustic patterns of dark banded rockfish for 20 ~ 200 kHz were similar among samples and they reflected size and morphological properties of fish species.
        4,000원
        9.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Novel unsaturated polyester composites with PAN-based nanofiber, stabilized PAN nanofiber, and carbonized nanofiber webs have been fabricated, respectively, and the effects of the nanofiber web content on their electrical resistivity, the thermal stability, dynamic storage modulus, and fracture surfaces were studied. The result demonstrated that the introduction of just one single layer (which is corresponding to 2 wt.%) of the carbonized nanofiber web to unsaturated polyester resin (UPE) could contribute to reducing markedly the electrical resistivity of the resin reflecting the percolation threshold, to improving the storage modulus, and to increasing the thermal stability above 350℃. The effect on decreasing the resistivity and increasing the modulus was the greatest at the carbonized PAN nanofiber web content of 8 wt.%, particularly showing that the storage modulus was increased about 257~283% in the measuring temperature range of -25℃ to 50℃. The result also exhibited that the carbonized PAN nanofibers were distributed uniformly and compactly in the unsaturated polyester, connecting the matrix three-dimensionally through the thickness direction of each specimen. It seemed that such the fiber distribution played a role in reducing the electrical resistivity as well as in improving the dynamic storage modulus.
        4,000원
        10.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocomposites with polypropylene/clay/wood flour were prepared by melt blending and injection molding. Thermal, mechanical and morphological properties were characterized. The addition of ballmilled clay, compatibilizer and wood flour significantly improved the thermal stability of the hybrids. The tensile modulus and strength of most hybrids was highly increased with the increased loading of clay, maleated polypropylene (MAPP) and wood flour (WF), compared to the PP/WF hybrids. The tensile modulus and strength of most hybrids were highly increased with the increased loading of ballmilled clay, MAPP and wood flour, compared to the hybrids with PP/WF. The transmission electron microscopy (TEM) photomicrographs illustrated the intercalated and partially exfoliated structures of the hybrids with ballmilled clay, MAPP and wood flour.
        4,000원
        14.
        2015.07 서비스 종료(열람 제한)
        Breeding and cultivation techniques are being treated very severely regarding ecological and physiological development in buckwheat. This study was conducted to focus on the diversity occurring in the cultivated and tartary buckwheat and provide an overview of the characteristics and genetic resources activities. Morphological results showed that the height of common buckwheat ranges from 82-90cm, common buckwheat induced by 200Gy ranges from 52-75cm, common buckwheat induced by 300Gy ranges from 43-56cm, common buckwheat induced by 400Gy ranges from 33-60cm whereas the tartary buckwheat hight ranges from 65-87cm, and while it exposed to various radiation (200Gy, 300Gy and 400Gy), the obtained height ranges from 73-92cm, 55-80cm and 60-75cm respectively. However, the stems from the both cultivar are hollow and that’s why, the plant is very prone to lodging. The leaf color of common buckwheat was green, 200Gray, 300Gy 400Gy common buckwheat light green and green, whereas the tartary buckwheat green and bottle-green, 200Gray 300Gy 400Gy tatary buckwheat bottle-green, common buckwheat (control, 200Gy, 300Gy, 400Gy) stem color is light green and pink, flower color is white, tartary buckwheat (control, 200Gy, 300Gy, 400Gy) flower color is light green. The stem color from tartary buckwheat showed (200Gy, 300Gy, 400Gy) light green and light red color. The results revealed that the two buckwheat cultivars showed diversified characteristics.