검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 127

        21.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to stricter environmental regulations of the International Maritime Organization(IMO), the number of ships fueled by Liquefied Natural Gas(LNG) is rapidly increasing. The International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code) limits the material of tanks that can store cryogenic substances such as LNG. Among the materials listed in the IGC Code, ASTM A553M-17 has been recently adopted as a material for LNG fuel tank projects because of its excellent mechanical properties at cryogenic temperatures. In shipyards, this material is being used to build tanks through Flux Cored Arc Welding (FCAW). However, there is a problem that magnetization occurs during welding and there is a big difference in welding quality depending on the welding position. In order to overcome this problem, this study intends to conduct basic research to apply laser welding to ASTM A553M-17 material. In this study, a study on penetration (HAZ depth, Penetration) and welding defects during fiber laser welding according to three types of shielding gases(nitrogen, argon, and helium) was conducted. To this end, a Bead on plate(BOP) experiment was performed under four fiber laser conditions(Power, Speed) for each shielding gas and welding defects caused by the use of the shielding gas were compared through cross-sectional observation, and the penetration depth was analyzed.
        4,000원
        22.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this work, a simple nonenzymatic glucose sensor has been proposed based on coconut shell charcoal (CSC) modified nickel foil as working electrode in a three-electrode electrochemical cell. Charcoal was prepared by the pyrolysis of coconut shells. The most important advantages of coconut shells are cost-effectiveness and their abundance in nature. The morphology and phase of the CSC powder were characterized by scanning electron microscopy and X-ray diffraction. The electrochemical performance of the CSC powder coated Nickel foil electrode was investigated by cyclic voltammetry and chronoamperometry. The sensor shows a higher sensitivity of 2.992 mA cm−2 mM−1 in the linear range of 0.5–5.5 mM and slightly lower sensitivity of 1.1526 mA cm−2 mM−1 in the range of 7–18.5 mM glucose concentration with a detection limit of 0.2 mM. The anti-interference property of CSC powder also was investigated and found that the response of interfering species was less significant compared to glucose response. The proposed sensor offers good sensitivity, wide linear range, and a very low response to interfering biomolecules.
        4,000원
        23.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Abstract In this study, we investigated that the activated carbon (AC)-based supercapacitor and introduced SIFSIX-3-Ni as a porous conducting additive to increase its electrochemical performances of AC/SIFSIX-3-Ni composite-based supercapacitor. The AC/SIFSIX-3-Ni composites are coated onto the aluminum substrate using the doctor blade method and conducted an ion-gel electrolyte to produce a symmetrical supercapacitor. The electrochemical properties of the AC/SIFSIX-3-Ni composite-based supercapacitor are evaluated through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge tests (GCD). The AC/SIFSIX-3-Ni composite-based supercapacitor showed reasonable capacitive behavior in various electrochemical measurements, including CV, EIS, and GCD. The highest specific capacitance of the AC/SIFSIX-3-Ni composite-based supercapacitor was 129 F g−1 at 20 mV s−1.
        4,000원
        24.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because of the International Maritime Organization(IMO)'s regulation to regulate emissions of ships, a change is taking place to replace ship fuels from Heavy Fule Oil(HFO) to Liquefied Natural Gas(LNG). In the case of LNG, it is a material obtained by liquefying Natural Gas(NG), and it is -163 degrees below zero, and the volume is reduced to 1/600 level. The material of the tank that can store LNG must be a material that can safely store LNG in a cryogenic environment, and the materials of the tank that can store LNG are limited in the International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code). Among the materials listed in the IGC Code, 9% nickel steel is used as a material for LNG fuel propulsion tanks that are recently ordered because of relatively high mechanical properties under cryogenic environments. In this study, the mechanical properties of butt welds were measured following the weld reliability evaluation of Flux Cored Arc Welding(FCAW) butt welds made of 9% nickel steel by PARTI. The measured mechanical properties are tensile strength, bending strength, hardness, and cryogenic impact test required by the classification for Welding Procedure Specification(WPS) approval.
        4,000원
        25.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Because of the International Maritime Organization(IMO)'s regulation to regulate emissions of ships, a change is taking place to replace ship fuels from Heavy Fule Oil(HFO) to Liquefied Natural Gas(LNG). In the case of LNG, it is a material obtained by liquefying Natural Gas(NG), and it is -163 degrees below zero, and the volume is reduced to 1/600 level. The material of the tank that can store LNG must be a material that can safely store LNG in a cryogenic environment, and the materials of the tank that can store LNG are limited in the International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk(IGC Code). Among the materials listed in the IGC Code, 9% nickel steel is used as a material for LNG fuel propulsion tanks that are recently ordered because of relatively high mechanical properties under cryogenic environments. In this study, butt welding was performed on a 9% nickel steel material using Flux Cored Arc Welding(FCAW), the most widely used welding method in shipyards. In PARTI, after securing the welding conditions, cross-sectional observation results analysis, liquid penetrating test, and radiographic test were performed to verify the reliability of the weld.
        4,000원
        26.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        서울시 경동시장 및 인근 대형마트에서 유통 중인 건조 수산물 150여 건을 시료로, ICP-MS를 이용하여 규격 미설정 중금속인 비소, 크롬, 니켈에 의한 오염도를 확인하고 그에 따른 위해도를 분석하였다. 크롬과 니켈은 검출량 및 위해도 분석 결과, 유의할 만한 결과를 확인할 수 없었다. 비소 검출량의 경우 건조어류 1.76±1.36 (0.00- 7.34), 건조연체류 3.38±2.42 (0.06-7.89), 건조해조류 1.99±1.33 (0.28-5.97), 건조갑각류 6.62±2.50 (3.30-13.57) ppm으로, 현재 건조 농산물 일부 및 한약재에서의 3 ppm 이하 규정을 간접적으로 적용했을 때, 건조갑각류는 분석에 사용된 시료 21건 모두 기준 이상으로 검출되었고, 건조연체류는 총 20건 중 50%에 해당하는 10건이 기준 이상, 건조 어류는 총 108건 중 15건(13.9%)이 기준 초과, 건조 해조류는 35건 중 6건(17.1%)의 시료가 기준을 초과 한 결과를 보였다. 시료 건수에 따른 한계에도 불구하고, 위 결과를 통해 각 품목별 및 세부 품목별 미 규격 중금속 오염에 대한 지속적인 자료 축적과 규격 설정의 필요성을 확인할 수 있었다. 비록 %PTWI 분석 결과 아직은 안전한 것으로 확인되었지만, 중금속은 여러 경로로 인체 내로 유입되며 위해도는 총합으로써 평가해야 하므로, 해양 및 수산물의 오염으로 인한 건강 위해 가능성에 대한 확인은 다각적인 연구와 검토가 필요할 것으로 판단된다.
        4,000원
        27.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, Pb (II), Co (II), and Ni (II) toxic heavy metal ions adsorption from synthetic aqueous system have been studied using the activated carbon prepared from Citrus limetta leaves. Therefore, the relationship between the adsorption parameters (solution pH, dosage of adsorbent, temperature, initial concentration of the ions, and adsorption time) and the removal percentage of the prepared adsorbent have been investigated. Additionally, the adsorbent was analyzed through BET, SEM, EDX, FTIR, and XRD analyses. According to the results, the maximal adsorption efficiencies for heavy metal ions were achieved in pH = 6, the adsorbent dosage of 1 g/L, temperature = 25 °C, the ion initial concentration of 5 mg/L, and contact time of 60 min, which were 99.53%, 98.63%, and 97.54% for Pb, Co, and Ni ions, respectively. Based on Kinetic studies, the performance of pseudo-second-order kinetic model was better than pseudo-first-order model for the description of time-dependent behavior of the process. Additionally, the equilibrium data were fitted by Langmuir and Freundlich isotherms, while the former performed better than the latter. The maximum adsorption capacity values for Pb, Co, and Ni ions were achieved equal to 69.82, 60.60, 58.139 mg/g, respectively. Considering the thermodynamic data, the studied processes were exothermic and spontaneous.
        4,900원
        28.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nickel nanopowders are obtained by the spark discharge method, which is based on the evaporation of the electrode surface under the action of the discharge current, followed by vapor condensation and the formation of nanoparticles. Nickel electrodes with a purity of 99.99% are used to synthesize the nickel nanoparticles in the setup. Nitrogen is used as the carrier gas with a purity of 99.998%. XRD, TEM, and EDX analyses of the nanopowders are performed. Moreover, HRTEM images with measured interplanar spacings are obtained. In the nickel nanopowder samples, a phase of approximately 90 wt% with an expanded crystal lattice of 6.5% on average is found. The results indicate an unusual process of nickel nanoparticle formation when the spark discharge method is employed.
        3,000원
        29.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The bead geometry according to the welding conditions was analyzed through the laser fillet welding experiment of 9% Ni steel, and the relationship between the shear strength and the five bead geometry measured by selecting the main bead geometry of the fillet weld was analyzed. Among the welding conditions, the welding conditions that directly affect the penetration depth are welding speed and laser power, and the working angle and beam position have a great influence on the formation of leg of vertical and horizontal members. The bead shape, which greatly affects the shear strength, is the horizontal member length, neck thickness, and weld length, and has a proportional relationship with the shear strength. As a result of confirming the relationship between shear strength and bead shape through the derivation of the trend line, it was confirmed that the length of the vertical member, whose R2 value was 0.92, was most closely related to the shear strength.
        4,000원
        30.
        2020.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, effects of carbon and nickel on microstructure and low temperature Charpy impact properties of HSLA (high strength low alloy) steels are investigated. To understand the complex phase transformation behavior of HSLA steels with high strength and toughness before and after welding processes, three kinds of HSLA steels are fabricated by varying the carbon and nickel content. Microstructure analysis, low temperature Charpy impact test, and Vickers hardness test are performed for the base metals and CGHAZ (coarse-grain heat affected zone) specimens. The specimens with the lowest carbon and nickel content have the highest volume fraction of AF, the lowest volume fraction of GB, and the smallest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the highest. The specimens with increased carbon and nickel content have the lowest volume fraction of AF, the highest volume fraction of GB, and the largest GB packet size. So, the low temperature Charpy absorbed energy of the CGHAZ specimen is the lowest.
        4,500원
        31.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        스트론튬(90Sr)과 니켈(59Ni)은 처분안전성평가에서 중요하게 다루는 핵종들이다. 지하에서 방사성핵종의 이동을 저지하기 위한 다양한 시도가 이루어지고 있는데, 처분시스템에서 용기와 부식반응으로 생기는 광물들 중에 핵종들과 반응성이 뛰어난 광물들이 존재하는 것이 알려졌다. 이들 중에서 철-황화합광물인 맥키나와이트(FeS)를 선정하여 스트론튬, 니켈과 수착 실험을 하였다. 심부지하에서 환원 알카리 환경을 고려하여, pH 8 ~ 12까지 조건에서 pH에 따른 수착영향을 살펴보았다. 실험결과, 스트론튬은 낮은 알카리영역에서 수착능이 저조하였지만, 니켈은 전 실험영역에서 높은 수착능을 보였다. 또, 두 핵종 모두 알카리 조건에서 pH가 증가할수록 수착량(Kd)이 증가하였는데, 이는 pH가 증가하면서 풍부해진 OH‐이온이 광 물표면에 수소나 양이온과 결합해 탈착하면서 광물표면에 전기음성도가 증가해 양이온인 스트론튬과 니켈을 전기적 인력으로 끌어당기기 때문으로 여겨진다.
        4,000원
        32.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        I investigated the homogeneous liquid crystal alignment using parallel patterning on nickel oxide thin film. Nickel oxide thin film was prepared by sol-gel process, which is and cost effective method to form oxide thin film. Since the sol-gel process is solution driven method, the patterning on nickel oxide can be achieved by imprinting lithography. Nickel oxide with parallel pattern was used for liquid crystal alignment layer, which can be a alternative to conventional rubbing process to aligning a liquid crystal molecules. As a result, a high transmittance of 83.9% was confirmed for the NiO film, and a stable horizontal orientation pretilt angle of 0.2° occurred in the imprinted NiO film. These results were judged to be a positive level that can be commercialized in the horizontal alignment type liquid crystal display that is currently used universally. Anisotropic characteristics of nickel oxide induced by a parallel pattern leads to the alignment of liquid crystals.
        3,000원
        34.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the rapid development of electricity, electronics, information communication, and biotechnology in recent years, studies are actively being conducted on nanopowders as it is required not only for high strengthening but also for high-function powder with electric, magnetic, and optical properties. Nonetheless, studies on nickel nanopowders are rare. In this study of the synthesis of nickel nanoparticles from LiNiO2 (LNO), which is a cathode active material, we have synthesized the nanosized nickel powder by the liquid reduction process of NiSO4 obtained through the leaching and purification of LNO. Moreover, we have studied the reduction reaction rate according to the temperature change of liquid phase reduction and the change of particle size as a function of NaOH addition amount using hydrazine monohydrate (N2H4·H2O) and NaOH.
        4,000원
        36.
        2018.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nickel oxide(NiO) thin films, nanorods, and carbon nanotube(CNT)/NiO core-shell nanorod structures are fabricated by sputtering Nickel at different deposition time on alumina substrates or single wall carbon nanotube templates followed by oxidation treatments at different temperatures, 400 and 700 oC. Structural analyses are carried out by scanning electron microscopy and x-ray diffraction. NiO thinfilm, nanorod and CNT/NiO core-shell nanorod structurals of the gas sensor structures are tested for detection of H2S gas. The NiO structures exhibit the highest response at 200 oC and high selectivity to H2S among other gases of NO, NH3, H2, CO, etc. The nanorod structures have a higher sensing performance than the thin films and carbon nanotube/NiO core-shell structures. The gold catalyst deposited on NiO nanorods further improve the sensing performance, particularly the recovery kinetics.
        4,000원
        37.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 비용매 유도 상분리와 소결 공정을 혼용하여 기체 및 액체에 대하여 슈퍼플럭스 거동을 보이는 니켈 모세관 지지체를 성공적으로 제조하였다. 니켈 모세관 전구체는 니켈, 폴리술폰, DMAC, PEG를 이용하여 도프용액을 제 조한 후 NIPS 공정에 의하여 제조된 후에, 다양한 소결온도에서 수소 분위기 조건에서 소결하여 니켈 모세관 지지체를 제조 하였다. 최적의 니켈 모세관 지지체는 950°C 소결온도에서 얻어졌는데 외경 722 μm, 내경 550 μm, 두께 94 μm이었다. 니켈 모세관 지지체 기공율은 26%, 평균 기공경은 4 μm이었으며 3차원으로 서로 연결된 기공구조를 갖고 있었다. 그리고 파괴하 중은 2.84 kgf, 파괴 연신율은 13%이었다. 니켈 모세관 지지체의 He, N2, O2, CO2에 대한 단일 기체 투과도는 상온에서 각각 432,327, 281,119, 264,259, 193,143 GPU로 슈퍼플럭스 거동을 보였다. 이는 3차원적으로 서로 연결된 4 μm 크기 마크로기 공을 통하여 viscous flow가 일어났기 때문에 나타나는 현상으로 설명되었다.
        4,000원
        38.
        2018.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Lithium-ion batteries have been considered the most important devices to power mobile or small-sized devices due to their high energy density. LixCoO2 has been studied as a cathode material for the Li-ion battery. However, the limitation of its capacity impedes the development of high capacity cathode materials with Ni, Mn, etc. in them. The substitution of Mn and Ni for Co leads to the formation of solid solution phase LiNixMnyCo1-x-yO2 (NMC, both x and y < 1), which shows better battery performance than unsubstituted LiCoO2. However, despite a high discharge capacity in the Ni-rich compound (Ni > 0.8 in the metal site), poor cycle retention capability still remains to be overcome. In this study, aiming to improve the stability of the physical and chemical bonding, we investigate the stabilization effect of Ca in the Ni-rich layered compound Li(Ni0.83Co0.12Mn0.05)O2, and then Ca is added to the modified secondary particles to lower the degree of cationic mixing of the final particles. For the optimization of the final grains added with Ca, the Ca content (x = 0, 2.5, 5.0, 10.0 at.%) versus Li is analyzed.
        4,000원
        39.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this research, a novel and efficient quinoline thioacetamide functionalized magnetic graphene oxide composite (GO@Fe3O4@QTA) was synthesized and utilized for dispersive magnetic solid phase preconcentration of Cd(II) and Ni(II) ions in urine and various food samples. A number of diverse methods were employed for characterization of the new nanosorbent. The design of experiments approach and response surface methodology were applied to monitor and find the parameters that affect the extraction performance. After sorption and elution steps, the concentrations of target analytes were measured by employing FAAS. The highest extraction performance was achieved under the following experimental conditions: pH, 5.8; sorption time, 6.0 min; GO@Fe3O4@QTA amount, 17 mg; 2.4 mL 1.1 mol L-l HNO3 solution as the eluent and elution time, 13.0 min. The detection limit is 0.02 and 0.2 ng mL-1 for Cd(II), and Ni(II) ions, respectively. The accuracy of the new method was investigated by analyzing two certified reference materials (sea food mix, Seronorm LOT NO 2525 urine powder). The interfering study revealed that there are no interferences from commonly occurring ions on the extractability of target ions. Finally, the new method was satisfactorily employed for rapid extraction and determination of target ions in urine and various food samples.
        4,000원
        40.
        2018.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study reports an environment-friendly synthetic strategy to process nickel oxide nanocrystals. A mesoporous nickel oxide nanostructure was synthesized using an environmentally benign biomimetic method. We used a natural rambutan peel waste resource as a raw material to ligate nickel ions to form nickel-ellagate complexes. The direct decomposition of the obtained complexes at 700 oC, 900 oC and 1100 oC in a static air atmosphere resulted in mesoporous nickel oxide nanostructures. The formation of columnar mesoporous NiO with a concentric stacked doughnuts architecture was purely dependent on the suitable direct decomposition temperature at 1100 oC when the synthesis was carried out. The prepared NiO nanocrystals were coated on cotton fabric and their antibacterial activity was also analyzed. The NiO nanoparticle-treated cotton fabric exhibited good antibacterial and wash durability performance.
        4,000원
        1 2 3 4 5