검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 821

        41.
        2023.05 구독 인증기관·개인회원 무료
        In KHNP CRI, the PTMs (plasma torch melting system) was developed as a treatment technology of a wide variety of radioactive wastes generated by nuclear power plants. The facility is made of melting zone, thermal decomposition zone, melt discharge zone, waste feeding device, MMI, and offgas treatment system. In this study, demonstration test was conducted using NaOH solution as liquid waste to evaluation the applicability of the PTM system. For demonstration test of NaOH solution treatment, the plasma melting zone is sufficiently pre-heated by the plasma torch for 5 hours. The temperature inside the plasma melting zone is about 1,600°C. The NaOH solution as simulant was put into the thermal decomposition zone by the spray feeding device with the throughput of maximum 30 liter/hour. During the test, the power of plasma torch is about 100 kW on the transferred mode. The 160 liters of liquid waste was treated for 500 minutes. After the demonstration test, the final product in the form of salt was remained in the melting zone, and the disposal of the final product are still under consideration.
        42.
        2023.05 구독 인증기관·개인회원 무료
        Radioactive waste must be stored for at least 300 years and must bear astronomical costs. In addition, unexpected potential risk factors are also a considerable burden. In the case of low-level radioactive waste, combustible and liquid low-contamination radioactive waste can be treated relatively easily through high-temperature plasma which the volume can be reduced by 1/250 and the weight by 1/30. It is possible to permanently dispose of the ash leached after plasma treatment in a more stable manner compared to the conventional methods. Types of low-level combustible radioactive waste, including paper, vinyl, clothing, filters, and resins, account for more than 30% of the total waste volume. Furthermore, high-temperature plasma treatment of low-level radioactive waste from petrochemical plants and medical institutions have many advantages, namely astronomical cost savings, securing free space in existing storage facilities, and improving the image of nuclear energy. Korea is preparing to decommission the Kori No. 1 nuclear power plant, and small and mediumsized enterprises and related organizations are conducting various studies to incinerate radioactive waste. In foreign countries, Britain began incineration technology in the 1970s, and Plasma Energy Group, LLC, headquartered in Florida, USA, physically changed the molecular structure of the material by combining plasma chambers and plasma arcs and obtained a patent application in 1992. Germany was approved for operation in 2002, and Switzerland completed a trial run of a plasma technologybased facility in 2004. Important radionuclides in terms of radioactive gas waste treatment include inert gases, radioiodine, and radioactive suspended particles. Gas waste is compressed in a compressor through a surge tank in the gas waste treatment system and filters at each stage. after that, the shortlife nuclide is naturally collapsed for 30 to 60 days in the storage or activated carbon adsorbent in the attenuation tank and released through HEPA filters. The radioactive concentration at discharge is monitored and managed using continuous monitoring equipment, and the oxygen concentration is managed in the gas waste treatment system to prevent explosion risk. The problem of radioactive waste disposal is not only a problem for people living in the present era, but also a big social issue that brings a burden to future generations While interest in plasma treatment is increasing from the decommissioning of the Kori Unit 1. in Korea, it is showed that there is a lack of systematic management and research especially in the radioactive volatile gases fields, that’s why I propose some ideas as follows. First, the government and related institutions should invest to the continuous radioactive monitoring system to produce and distribute continuous radioactive monitoring facilities with an affordable price. Second, it is recommended that radioactive waste incineration would be connected to the GRS system of the plant’s gas radwaste treatment system, and radioactive volatile materials should be monitored through continuous monitoring system. Third, radioactive volatile materials generated according to the temperatures and times during plasma incineration treatment are different. Therefore, prior classification of each expected radioactive volatile substance must be performed before incineration.
        43.
        2023.05 구독 인증기관·개인회원 무료
        A plasma torch is a kind of equipment that utilizes an electric arc to dissociate a gas and transfer an electric energy to the gas to generate very high temperature flame. KHNP-CRI has been developed the Plasma Torch Melter (PTM) to reduce radioactive waste disposal volumes and drop the radiation level of wastes. As you guess, there is required condition for proper start-up operation like current, voltage, plasma gas flow, cooling water flow, temperature in melter and so on. Thus, the optimum start-up operation condition of plasma torch will be estimated experimentally in this paper.
        44.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The surge in food delivery systems during the coronavirus 2019 pandemic necessitated this study of heavy metal migration from food contact materials (FCMs). A total of 104 samples of FCMs, comprising 51 polypropylene (PP), 21 polyethylene (PE), and 32 polystyrene (PS) samples of six different types of FCMs (containers, covers, table utensils, cups, pouches, and wrappers) used for food delivery distributed in Korea, were collected and investigated for migration of three heavy metals (Pb, Cd, and As) using inductively coupled plasma–mass spectrometry (ICP-MS) to determine whether they complied with Korea’s Standards and Specifications for Utensils, Containers, and Packages. Acetic acid (4%, v/v) was used as the food simulant, and tests were performed at 100oC (in harsh conditions) for 30 min. Linearity of Pb, Cd, and As showed acceptable results with a coefficient of determination (R2) value of 0.9999. Limit of detection (LOD) and limit of quantification (LOQ) of Pb, Cd, and As were 0.001, 0.001, and 0.001 μg/L and 0.002, 0.003, and 0.003 μg/L, respectively. Accuracy and precision results complied with the criteria presented in the European Commission Joint Research Centre guidelines. The average concentration of Pb, Cd, and As migration detected in a total of 104 samples was 0.009–0.260 μg/L, which was very low compared with the migration specification set in the Standards and Specifications for Utensils, Containers, and Packages. The maximum level of Pb corresponded to 0.23% of the migration limit. There were no samples exceeding the limit. Thus, this study confirmed that the heavy metal contents of FCMs used for delivery food distributed in Korea were safely managed. The data from this study represent an invaluable source for science-based safety management of hazardous heavy metals migrating from FCMs used in the food delivery industry.
        4,000원
        45.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon steel pipes, which are essentially used in the manufacturing industry, are used in various fields due to the advancement of the industry, and a cutting process is essentially applied to pipes manufactured in a nominal size. The cutting process is the most basic and first process used to obtain a material in a desired shape, and it can affect the quality of subsequent processes such as welding or painting, so high-quality cutting surfaces are essential. Therefore, due to the advantage of improving productivity, it is essential to study to secure the appropriate quality of the cutting surface of the plasma cutting process, which is widely used in the industrial field. In this study, the effect of cut surface quality according to process parameters in the plasma cutting process for carbon steel pipe materials was analyzed. The surface roughness was measured to determine the quality of the cut surface, and the relationship between the surface roughness and the process variables was confirmed by selecting the arc current and cutting speed, which are identified as the main factors forming the surface roughness, as process variables.
        4,000원
        46.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-temperature and high-pressure post-processing applied to sintered thermoelectric materials can create nanoscale defects, thereby enhancing their thermoelectric performance. Here, we investigate the effect of hot isostatic pressing (HIP) as a post-processing treatment on the thermoelectric properties of p-type Bi0.5Sb1.5Te3.0 compounds sintered via spark plasma sintering. The sample post-processed via HIP maintains its electronic transport properties despite the reduced microstructural texturing. Moreover, lattice thermal conductivity is significantly reduced owing to activated phonon scattering, which can be attributed to the nanoscale defects created during HIP, resulting in an ~18% increase in peak zT value, which reaches ~1.43 at 100oC. This study validates that HIP enhances the thermoelectric performance by controlling the thermal transport without having any detrimental effects on the electronic transport properties of thermoelectric materials.
        4,000원
        55.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A mixture of elemental Co50Si50 powders was subjected to mechanical alloying (MA) at room temperature to prepare a CoSi thermoelectric compound. Consolidation of the Co50Si50 mechanically alloyed powders was performed in a spark plasma sintering (SPS) machine using graphite dies up to 800 °C and 1,000 °C under 50 MPa. We have revealed that a nanocrystalline CoSi thermoelectric compound can be produced from a mixture of elemental Co50Si50 powders by mechanical alloying after 20 hours. The average grain size estimated from a Hall plot of the CoSi intermetallic compound prepared after 40 hours of MA was 65 nm. The degree of shrinkage of the consolidated samples during SPS became significant at about 450 °C. All of the compact bodies had a high relative density of more than 94 % with a metallic glare on the surface. X-ray diffraction data showed that the SPS compact produced by sintering mechanically alloyed powders for 40-hours up to 800 °C consisted of only nanocrystalline CoSi with a grain size of 110 nm.
        4,000원
        56.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 PET를 재활용하여 만든 물질재생 PET사를 함침공정을 통해 고전도성의 E-textile로 제작하는 것이다. 소수성의 성질을 가지고 있는 PET사는 virgin과 recycled 모두 함침공정을 통해 전자섬유로 제작되었을 때에 높은 전도성을 부여하기 힘들다는 특징이 있다. 함침공정의 효율성 향상을 위해 FEMTO SCIENCE사의 Covance-2mprfq 모델을 사용하여 재생 PET사로 이루어진 시료를 50w 5분, 10분간 플라즈마로 표면 개질하였다. 이 후 SWCNT 분산액(.1wt%, cobon 사)에 5분간 시료를 담근 후 패딩기(Padder, DAELIM lab)를 통해 시료 안쪽으로 용액이 잘 스며들도록 Dip-coating 진행하였다. 공정이 완료된 후 저항측정을 양끝점에서 멀티미터를 통해 측정하 고 좀 더 넓은 전극을 통해 정밀하게 다시 측정하였다. 고찰한 결과 플라즈마 표면 개질을 통해 함침공정을 통한 고전도성 부여가 가능해졌음을 확인할 수 있었다. 10분간 표면 개질한 경우 저항이 최대 2.880배 감소하였다. 본 연구결과를 기반으로 스마트 웨어러블 분야에서 활용되는 E-textile 또한 recycle 소재로 제작함으로써 석유자원을 절약하고 탄소배출량을 감소시킬 수 있는 스마트 웨어러블 제품을 개발하고자 한다.
        4,000원
        57.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Removing CO2 gas to address the global climate crisis is one of the most urgent agendas. To improve the CO2 adsorption ability of activated carbon, nitrogen plasma surface treatment was conducted. The effect of nitrogen plasma treatment on the surface chemistry and pore geometry of activated carbon was extensively analyzed. The porosity and surface groups of the activated carbon varied with the plasma treatment time. By plasma treatment for a few minutes, the microporosity and surface functionality could be simultaneously controlled. The changed microporosity and nitrogen groups affected the CO2 adsorption capacity and CO2 adsorption selectivity over N2. This simultaneous surface etching and functionalization effect could be achieved with a short operating time and low energy consumption.
        4,000원
        58.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실버 페이스트는 상대적으로 낮은 열처리로 공정이 가능하기 때문에 전자 소자 응용분야에서 유용한 전극 재료이다. 본 연구에서는 은 페이스트 전극에 대기압 플라즈마 제트를 이용하여 전극 표면을 처리 했다. 이 플라즈마 제트는 11.5 kHz 작동 주파수에서 5.5 ~ 6.5 kV의 고전압을 사용하여 아르곤 분 위기에서 생성되었다. 플라즈마 제트는 대기압에서 수행함으로써 인쇄 공정에 더 유용할 수 있다. 플라즈 마 처리시간, 인가된 전압, 가스유량에 따라 전극의 표면은 빠르게 친수성화 되었으며 접촉각의 변화가 관 찰되었다. 또한, 대면적 샘플에서 플라즈마 처리 후 접촉각의 편차가 없었는데, 이는 기판의 크기에 관계없 이 균일한 결과를 얻을 수 있었다는 것을 의미한다. 본 연구의 결과는 대면적 전자소자의 제조 및 향후 응 용 분야에서 적층 구조를 형성하는데 매우 유용할 것으로 기대된다.
        4,000원
        59.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an Al82Ni7Co3Y8 (at%) bulk metallic glass is fabricated using gas-atomized Al82Ni7Co3Y8 metallic glass powder and subsequent spark plasma sintering (SPS). The effect of powder size on the consolidation of bulk metallic glass is considered by dividing it into 5 m or less and 20–45 m. The sintered Al82Ni7Co3Y8 bulk metallic glasses exhibit crystallization behavior and crystallization enthalpy similar to those of the Al82Ni7Co3Y8 powder with 5 m or less and it is confirmed that no crystallization occurred during the sintering process. From these results, we conclude that the Z-position-controlled spark plasma sintering process, using superplastic deformation by viscous flow in the supercooled liquid-phase region of amorphous powder, is an effective process for manufacturing bulk metallic glass.
        4,000원
        60.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to compare the efficiency of air and oxygen injected into the underwater non-thermal dielectric barrier discharge plasma (DBD plasma) device used to remove five types of antibiotics (tetracycline, doxycycline, oxytetracycline, clindamycin, and erythromycin) artificially contained in the fish farm discharge water. The voltage given to generate DBD plasma was 27.8 kV, and the measurement intervals were 0, 0.5, 1, 2, 4, 8, 16 and 32 minutes. Tetracycline antibiotics significantly decreased in 4 minutes when air was injected and were reduced in 30 seconds when oxygen was injected. After the introduction of air and oxygen at 32 minutes, 78.1% and 95.8% of tetracycline were removed, 77.1% and 96.3% of doxycycline were removed, and 77.1% and 95.5% of oxytetracycline were removed, respectively. In air and oxygen, 59.6% and 83.0% of clindamycin and 53.3% and 74.3% of erythromycin were removed, respectively. The two antibiotics showed lower removal efficiency than tetracyclines. In conclusion, fish farm discharge water contains five different types of antibiotics that can be reduced using underwater DBD plasma, and oxygen gas injection outperformed air in terms of removal efficiency.
        4,000원
        1 2 3 4 5