To identify some significant phenotypic characteristics of maize(zea mays) seeds, we have obtained Red, Green, Blue(RGB) digital image data from 82 recombinant inbred lines. Based on the collected image data, their morphological and color data were analyzed, and seven significant parameters were selected, including area, perimeter, length, width, circularity, roundness, and surface texture. The extracted RGB data were converted into color hex codes to visualize the representative colors of the seeds. These visualized colors were categorized into six groups: gray, yellowish white, yellow, grayish orange, purple, and brown. The results of maize seed phenotypic analysis using the RGB digital images in this study will serve as a useful tool for constructing a database of seed phenotyping database and establishing a standardized classification system.
벼의 잎은 광합성을 위한 주요 기관으로, 동화산물의 생산을 통해 벼의 수량 결정에 영향을 준다. 따라서, 상위엽의 형태적 특징은 다수성 벼 품종의 육성을 위한 필수적인 고려요소이다. 본 연구에서는, 연차간 안정적으로 발현하는 3개의 엽폭 조절 QTL인 qLW4.1, qLW4.2, qLW7을 탐지하였다. 이들은 분석집단에서 나타난 엽폭 표현형 변이의 5.2~44.9% 를 설명할 수 있었다. qLW4.2 영역에 대한 후보유전자 분석 결과, 해당 QTL 영역에서 엽폭 조절 유전자인 NAL1을 발견하였다. 상위엽은 수량에 대해 정의 간접효과 나타냈으며, 그 효과의 크기는 수당립수에 대한 상위엽의 정의 직접효과와 수수에 대한 상위엽의 부의 직접효과에 의해 결정되었다. 한국 벼 유전자원에서 엽폭은 상대적으로 좁은 범위에서 표현형 변이를 나타내었으며, 이는 특정 상위엽폭이 한국 자원에서 선호 되었음을 시사한다. NAL1의 하플로타입 분석결과는 대다수의 한국 자원들이 자포니카형 하플로타입을 지닌 반면에, 모든 통일형 품종들은 인디카형을 지니고 있음을 밝혀냈다. 이러한 결과는 유용 대립유전자형인 자포니카형 NAL1의 도입을 통해 통일형 품종의 다수성 형질을 더욱 향상시킬 수 있음을 의미 한다.
Sorghum-Sudan grass which is an annual forage grass in Gramineae have been bred for biomass promotion. The recombinant inbred line (RIL) populations were derived from the F2:3 genetic mapping population of Sorghum 314A×zongke Sudan grass. The breeding selection based on agronomic characters and DNA molecular marker statistical analysis was carried among the progenies of the RIL populations, and 9 recombinant breeding progenies were determined as heterobeltiosis with high yield. According to DNA diversity analysis of simple sequence of repeats(SSR) marker, the genetic varieties were abundant among the families, and the recombinant breeds of high yield were distributed among the different RIL populations.2 family lines, which have similar agronomic characters and yield, and whose genetic distance nearly equal to zero, showed difference on arid tolerance. 4 breeding lines were selected on agronomic characters and resistance in the field trials, and 2 breed lines were qualified for the regional testing.
Seed weight (SW), often expressed as 100-seed weight (HSW), is an important yield component in soybean and has been found to show positive correlation with seed yield. It is shown to behave as a quantitative trait controlled by many loci that are largely unclear. In this study, we represent the identification of chromosomal regions controlling the seed weight in soybean. We used a Recombinant Inbred Line (RIL) population, consisting of 188 lines derived from a cross of a wild soybean PI483463 (HSW: 0.85g) and a cultivated soybean cultivar Hutcheson (HSW: 14.05g) to identify the chromosomal regions controlling the SW trait. The population, along with parental samples and check, William82 (HSW: 21.2g) was grown for four years and phenotype data was recorded postharvest. A total of 535 SNP and 16 SSR markers, polymorphic between the parents were employed to genotype the RILs using Golden gate assay to develop the linkage map. Whole genome QTL scanning identified a total of 17 QTLs, spanning 10 chromosomes for the 100-seed weight. All these QTLs explained phenotypic variation (PV) in the range of 3.77 to 12.33%. Of the 17 QTLs, 2 QTLs qSWA1-1 and qSWD2-1, found to be the consistent QTLs, expressing in all the four environments. The QTL qSWD2-1 explained highest contribution to the total PV with 10.04 -12.23 %. The remaining 15 QTLs were identified in at least one environment with PV ranging up to 10.39%. The findings from this study will provide useful information to understand the genetic and molecular basis of SW and facilitate further genomic research leading to the yield improvements in soybean.
고령화 사회로 접어들면서 만성 신부전증 환자는 증가되고 있으며, 저단백질 식품에 대한 수요도 증가되고 있다. 중국173/주남벼 재조합 집단을 이용하여 저Glutelin 고품질 벼 품종개발의 육종효율 증진을 위해 DNA마커의 이용성을 검토하였으며, 밥맛향상을 위해 미질관련 형질들과 상관분석을 수행하였다. 중국173호/주남벼 재조합 집단에서 SDS PAGE결과 얻어진 저Glutelin 표현형과 functional DNA marker의 유전자형이 일치하여 DNA marker를 이용한 선발이 가능함을 확인하였다. 밥맛향상을 위해 미질관련 형질들과 상관분석을 수행한 결과, 윤기값과 Amylose 함량은 유의한 부의 상관을 나타내었으며, 단백질 함량은 윤기값에 많은 영향을 미치지 않았다. 반면, 단백질 조성에 따른 저Glutelin 계통군과 정상계통군의 비교에서 저Glutelin 계통군은 정상군에 비해 유의하게 윤기값이 낮았으며, 저Glutelin-저Amylose 계통군과 정상계통군은 대등한 윤기값을 유지하였다. 따라서 고품질 저Glutelin 품종개발을 위해 저Amylose 유전자의 활용이 바람직한 것으로 판단되었다. 이들 분석결과와 주요 농업적 특성을 고려하여 저Glutelin-저Amylose인 유망계통 밀양262호를 육성하였으며, 금후 고품질 저Glutelin 품종개발에 활용될 것으로 기대된다.
Amylogram properties such as peak viscosity, hot viscosity, cool viscosity, breakdown, pasting consistency and setback were investigated by the Rapid Visco Analyzer and interpreted by the relationship among amylogram properties according to the varietal groups classified by the rapidity of grain filling (RGF) which was calculated by the percentage of grain weight at 15 days after heading to 40 days after heading. The 164 rice recombinant inbred lines from the cross of Milyang23 and Gihobyeo were used to get the basic information regarding the amylogram properties. The used recombinant inbred lines could be grouped into 4 varietal groups such as slow maturing (less than 40% of RGF), mid-slow maturing (41-60% of RGF),mid-fast maturing (61-80% of RGF), and fast maturing (more than 81% of RGF) groups based on the RGF. The peak viscosity and setback showed regular tendency according to the varietal groups classified by the RGF. Positive significant correlations were found between pasting consistency and setback, however negative significant correlations were found between breakdown and setback in all varietal groups.
The viviparous germination (VG) with lodging caused the yield reduction and quality deterioration in rice. We carried out the evaluation of VG tolerance (on the 40th day after heading) and mapping QTLs associated with VG tolerance using the recombinant inbred lines (M/G RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). The VG rates of Milyang 23 and Gihobyeo were 0.0 and 7.0%, respectively. The averaged VG rate of 162 M/G RILs was 7.7%, and their range was from 0.0 to 50.9%. Of the 162 RILs, 144 lines were tolerant less than 10%, and 18 lines were susceptible more than 10%. Using the M/G RIL Map, three QTLs associated with the viviparous trait were detected on chromosome 2 (qVG 2-1 and qVG 2-2) and 8 (qVG 8). qVG 2-1 was linked to RM 32D and RZ 166, and had LOD score of 2.97. qVG 2-2 was tightly linked to E13M59.119-Pl and E13M59.M003-P2, and showed higher LOD score of 3.41. qVG 8 was linked to RM33 and TCT116, and had LOD score of 2.67. The total phenotypic variance explained by the three QTLs was about 24.4% of the total variance in the population. The detection of new QTLs associated with VG tolerance will provide important informations for the seed dormancy, low temperature germination, or comparative genetics.