본 연구에서는 구조물의 재료, 구조물의 단면, 지진 하중등의 불확실성을 고려한 저형 전단벽의 최대 전단력를 예측하는 뉴 런-네트워크 모델을 개발하였다. 이를 위해 실험 데이터를 통해 검증된 박스타입 저형 전단벽 수치해석 모델을 구축하였고, 가정된 분 포를 통해 200개의 구조물의 재료, 단면변수를 라틴 하이퍼 큐브 샘플링을 통해 추출하였다. 또한 이전 연구에서 사용된 인공지진파를 데이터를 기반으로 10개의 다른 PGA 레벨별 총 200개의 인공지진파 데이터를 구축하였다. 뉴런-네트워크 모델의 Training 및 testing을 위해 200개의 데이터셋에 상응 수치해석 모델을 구축하고 최대 전단력을 산출하였다. 이렇게 구축된 데이터셋을 이용하여 최종적으로 뉴런-네트워크 모델을 확정하였다. 마지막으로 구축된 모델로부터 얻어진 취약도와 기존에 사용되는 방법들로부터 얻은 취약도를 비교, 분석하여 본 연구에서 구축된 모델의 정확도를 보여주었다.
Steel plate shear walls (SPSWs) have been recognized as an effective seismic-force resisting systems due to their excellent strength and stiffness characteristics. The infill steel plate in a SPSW is constrained by a boundary frame consisting of vertical and horizontal structural members. The main purpose of this study was to investigate deformation modes and hysteretic characteristics of steel plate shear walls (SPSWs) to consider the effects of their aspect ratios and width-to-thicness ratios. The finite element model (FEM) was establish in order to simulate cyclic responses of SPSWs which have the two-side clamped boundary condition and made of conventional steel grade. The stress distribution obtained from the FEA results demonstrated that the principal stresses on steel plate with large thickness-to-width ratio were more uniformly distributed along its horizontal cross section due to the formation of multiple struts.
The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.
A shake table test is conducted for the three-story reinforced concrete building structure using 0.28 g, 0.5 g, 0.75 g, and 1.0 g of seismic input motions based on the Gyeongju earthquake. Computational efforts are made in parallel to explore the mechanical details in the structure. For engineering practice, the elastic modulus of concrete and rebar in the dynamic analysis is reduced to 38% and 50%, respectively, to calibrate the structure's natural frequencies. The engineering approach to the reduced modulus of elasticity is believed to be due to the inability to specify the flexibility of the actual boundary conditions. This aspect may lead to disadvantages of nonlinear dynamic analysis that can distort local stress and strain relationships. The initial elastic modulus can be applied directly without the so-called engineering adjustment with infinite element models with spring and spring-dashpot boundary conditions. This has the advantage of imposing the system flexibility of the structure on the sub-boundary conditions of springs and damping devices to control its sensitivity in a serial arrangement. This can reflect the flexibility of realistic boundary conditions and the effects of system damping (such as the gap between a concrete footing and shake table, loosening of steel anchors, etc.) in scalar quantities. However, these spring and dashpot coefficients can only be coordinated based on experimental results, making it challenging to select the coefficients in-prior to perform an experimental test.
An approximate analysis method is proposed to predict the dynamic amplification of shear forces in ordinary reinforced concrete shear walls as a preliminary study. First, a seismic design for three groups of ordinary reinforced concrete shear walls higher than 60 m was created on the basis of nonlinear dynamic analysis. Causes for the dynamic amplification effect of shear forces were investigated through a detailed evaluation of the nonlinear dynamic analysis result. A new modal combination rule was proposed on the basis of that observation, in which fundamental mode response and combined higher mode response were summed directly. The fundamental mode response was approximated by nonlinear static analysis result, while higher mode response was computed using response spectrum analysis for equivalent linear structural models with the effective stiffness based on the nonlinear dynamic analysis result. The proposed approximate analysis generally predicted vertical distribution of story shear and shear forces of individual walls from the nonlinear dynamic analysis with comparable accuracy.
Seismic performance of ordinary reinforced concrete shear wall systems commonly used in high-rise residential buildings is evaluated. Three types of shear walls exceeding 60m in height are designed by performance-based seismic design. Then, incremental dynamic analysis is performed collapse probability is assessed in accordance with the procedure of FEMA P695. As a result, story drift, plastic rotation, and compressive strain are observed to be major failure modes, but shear failure occur little. Collapse probability and collapse margin ratio of performance groups do not meet requirement of FEMA P695. It is observed that critical wall elements fail due to excessive compressive strain. Therefore, the compressive strain of concrete at the boundary area of the shear wall needs to be evaluated with more conservative acceptance criteria.
Reinforced concrete shear walls with deficient reinforcement details are tested under cyclic loading. The deficiency of reinforcement details includes insufficient splice length in U-stirrups at the ends of horizontal reinforcement and boundary column dowel bars found in existing low- to mid-rise Korean buildings designed non-seismically. Three test specimens have rectangular, babel and flanged sections, respectively. Flexure- and shear-controlled models for reinforced concrete shear walls specified in ASCE/SEI 41-13 are compared with the flexural and shear components of force-displacement relation extracted separately from the top displacement of the specimen based on the displacement data measured at diverse locations. Modification of the shear wall models in ASCE/SEI 41-13 is proposed in order to account for the effect of bar slip, cracking loads in flexure and shear. The proposed modification shows better approximation of the test results compared to the original models.
Friction dampers using the flexural deformation of shear walls can be installed as coupling beam system between two adjacent walls of shear wall structures. To verify the seismic control performance of proposed friction dampers, numerical nonlinear analysis of shear walls governed by flexural behavior is conducted. Control effectiveness of shear walls connected by beams with the proposed dampers are compared for single shear wall with same flexural rigidity. Average responses of the shear walls with the dampers are found with seven scaled-downed earthquakes based on KBC 2005 design spectrum. Slip load is the most important design parameter. It is designed to be 5, 10, 20, 30, 60, 90% of total vertical shear force at damper location to prevent damper slip in specific stories. Nonlinear time-history analysis is conducted by using SeismoSturct analysis program. Seismic control performance of the dampers is evaluated for base shear, energy dissipation and top-floor displacement. Results show that the dampers are the most effective in reducing the responses when their total slip load is 30% of total vertical shear force.
Before incorporating the earthquake-resistance design in design code(1988), most of existing residential buildings were built without having lateral resistance capacity in addition to their structural peculiarity such as exterior stair ways, exterior elevator room. For these reasons, the retrofitting research demands for existing buildings arise recently and many retrofitting methods are proposed. These tasks are irnportant to reduce the enormous economic loss and environmental issues. The objective of this study is to predict the perforrnance increase due to various strengthen schemes and suggest adequate strengthen methods for wall type apartment buildings not designed to resist earthquake.
이 논문에서는 단조증가하중 하에서 철근콘크리트 전단벽의 수치해석을 위해 개발된 재료모델을 반복하중을 포함한 일반적인 하중 하에서의 구조 거동을 효과적으로 모사하기 위한 해석모델로 확장하여 제안하고 있다. 먼저 재료모델을 구성함에 있어 하중이력에 따라 인장과 압축이 교대로 작용하는 콘크리트는 기본적으로 회전균열모델을 따르는 직교이방성 재료로써 가정하였고, 직교하는 축에 대해 인장과 압축을 오가는 이력곡선을 중심으로 등가의 일축응력-변형률 관계를 정의하였다. 나아가 철근은 평균응력-변형률 개념을 통해 단조증가 상태의 응력-변형률 관계를 구성하였고, 역전된 반복하중으로 인해 발생하는 Bausc-hinger 효과를 고려하여 이력곡선을 정의하였으며, 전단 효과를 고려하기 위해 전단지간 비에 따라 기존에 제안된 이력곡선을 수정하였다. 특히 해석과정의 효율성을 도모하고 변형연화 거동특성 등 일반적인 하중-변위 평형경로를 갖는 철근콘크리트 구조물의 비선형 해석을 위해 arc-length 기법을 도입하였다. 또한 제안된 수치해석모델에 대한 효율성을 검증하기 위해 요소단위의 철근콘크리트 판넬 시험체와 대표적인 전단벽 시험체의 반복하중 이력에 따른 하중-변위 관계 등 전단에 의해 지배를 받는 구조체에 대한 해석 결과와의 비교가 이루어졌다.
본 논문은 콘크리트 균열방향의 회전 및 철근의 항복에 따른 2차원 R/C 구조물의 극한거동 덴 한계상태설계에 관한 연구를 다룬 것으로, 유한요소모델에 적용하여 비선형 해석 및 한계상태설계가 가능한 수치 해석 및 설계 알고리즘을 소개하였다. 철근의 설계를 위하여, 각 유한요소의 극한거동에 기초한 한계상태설계방정식이 유한요소 알고리즘에 도입되었다. 한편, 하중에 따른 콘크리트 균열방향의 회전 및 철근의 항복을 고려한 2차원 R/C 평면요소의 단순화된 실용적 비선형 응력-변형률 거동의 구성관계모델을 제시하여 비선형 유한요소해석 알고리즘을 구성하였다 제시된 해석 모델을 R/C 전단벽의 실험모델과 비교하여 검증하도록 하였으며, R/C 전단벽에 대한 설계 예를 통하여, 각각의 유한요소에서 얻어진 설계 철근비를 한계상태설계방정식으로부터 산정하였다.
최근의 건축물 내진 설계 추세에 맞추어, 박판의 냉간성형강으로 제작되는 스틸하우스 전단벽체의 내진 성능을 평가하였다. 시험체는 브레이싱의 종류에 따라 변수를 두었다. 반복가력의 결과로는 에너지소산 능력을 살펴보았는데, 브레이싱 부재로 형강을 사용한 시험체가 판재를 사용한 시험체 보다 우수하였다. 또한, 유사동적실험을 통해서는 면재를 사용한 전단벽체 보다. 스틸하우스 전단벽체 중 하나인 X-브레이싱 형태와 유사한 X2SPCH의 내진성능이 비교적 우수함이 판명되었다.
현재 국내에서는 벽과 슬래브으로만 이루어진 벽식 구조형식의 아파트 건물이 많이 사용되고 있다. 아파트 건물의 전단벽에는 기능적인 필요에 의하여 한 개 혹은 여러 개의 개구부가 존재할 수 있다. 이러한 개구부가 있는 전단벽의 해석에 대해서 기존에 많은 연구가 수행되어 왔으나, 적용하는데 많은 해석시간과 컴퓨터 메모리가 필요하는 등 여러 가지 제한점 때문에 실제 해석 및 설계에는 별로 적용되지 못하고 있다. 따라서, 본 논문에서는 기존 연구의 제한점들을 개선하여 개구부 크기, 위치 및 개수에 관계없이 적용할 수 있는 해석 방법을 제안하였다. 개구부가 있는 전단벽을 정확하게 해석하기 위해서는 전단벽을 평면응력요소로 세분화하여 모형화하는 것이 필요하다. 그러나 아파트 건물 전체를 평면응력요소로 세분하여 모형화하는 것은 상당한 해석시간과 컴퓨터 메모리가 소요되므로 실무에 적용하기에는 어려운 점이 많다. 따라서, 본 논문에서는 이러한 단점을 개선하고자 슈퍼요소와 행렬응축기법, 그리고 가상보를 사용한 해석기법을 제안하였다. 제안된 해석기법의 효용성을 검증하기 위하여 다양한 크기와 위치의 개구부가 있는 예제구조물을 선택하여 정적 및 동적해석을 수행하였다. 예제해석 결과 제안된 해석기법은 소요되는 해석시간과 컴퓨터 메모리를 대폭 줄이면서도 세분모델과 비슷한 정확성을 가지는 것을 확인할 수 있었다.
이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.
This study is to evaluate the reinforcement details of reinforced concrete special shear wall systems. The use U-shaped transverse reinforcement and relaxed reinforcement regulations within special boundary elements in shear wall is shown to improve the construction issue caused by over-design by borrowing architectural structural standards in strong earthquake area. This result will give a basis for improving the performance of shear walls with use of U-type transverse bars.
This study developed a consecutive convexo-concave shaped shear reinforcement approach as an alternative for transverse crossties in basement walls. Test results revealed that the developed shear reinforcement is more favorable to restricting the opening of the inclined cracks and enhancing the shear capacity of the basement wall when compared with the conventional crossties.
This research is an application of SHCC (Strain harding Cementitious Composite) in concrete shear wall system in order to improve the structural performance of conventional shear walls. Based on experimental loading results, it was observed that the developed SHCC shear walls showed improved strength as well as enhancements in controlling of bending and shear cracks.
This study examined the effectiveness of the slip-resistance bars on the shear strength and slip displacement components of squat heavyweight concrete (HWC) shear walls with construction joints at the base interface. For the slip-resistance bars, X-, W-, and Ω-shaped bars were arranged at the base interface. W-shaped bars were more effective than the other bars in reducing the slip displacement at the base interface, in particular at the high inelastic level of the drift ratio of 2.0%.
This study analytically reviewed the behavior of Steel Plate Concrete(SC) walls subjected to cyclic shear forces to investigate the effects of shape and arrangement spacing of studs on the design of SC walls. The shape of the stud did not affect the shear behavior of SC wall but, the spacing influenced to its composite action.