본 연구에서는 친환경적이고 경제적인 수용액 환경에서 금속-유기 골격체(metal-organic frameworks, MOF)인 UiO-66을 합성하는 방법을 개선하고, 합성 조건이 UiO-66의 표면적 및 결정성에 미치는 영향을 분석하였다. 합성 실험은 금 속 용액과 리간드 용액의 주입 순서 및 계면활성제(Tween 20)의 첨가 유무를 변화시키며 진행하였다. 그 결과, 리간드 용액 을 금속 용액에 주입하고 계면활성제를 사용하지 않은 경우, 표면적과 결정성이 더 높은 UiO-66을 얻을 수 있었다. SEM 및 XRD 분석 결과, 계면활성제의 첨가는 입자 크기와 결정 구조에 큰 변화를 주지 않았으나, BET 분석 결과 표면적 감소가 확 인되었다. 이는 합성 과정에서 계면활성제가 핵 형성과 결정 성장에 영향을 미칠 수 있음을 시사한다. 본 연구 결과는 수용액 기반 UiO-66 합성법의 최적화, 대규모 제조 공정 및 다양한 산업적 응용에 유용한 정보를 제공할 수 있을 것이다.
Activated carbon is generally recognized as an applicable material for gas or liquid adsorption and electrochemical devices, such as electric double-layer capacitors (EDLCs). Owing to the continuous increase in its price, research aimed at discovering alternative materials and improving its fabrication yield is important. Herein, organic pigments were ingeniously employed to enhance the fabrication of high-surface-area activated carbon with remarkable efficiency. Moreover, the focus was centered on the assessment of activated carbon derived from 2,9-dimethylquinacridone, also known as CI Pigment Red 122 for its capacity to adsorb tetracycline (TC) and its applicability as an electrode material for EDLCs. Activating these organic pigments with varying potassium hydroxide ratios allowed the fabrication of activated carbon with a higher yield than that for conventional activated carbon. Furthermore, it was confirmed that activated carbon with a very high specific surface area can be efficiently fabricated, demonstrating a remarkable potential in various application fields. Notably, this activated carbon exhibited an impressive maximum specific surface area and a total pore volume of 3,935 m2/ g and 2.324 cm3/ g, respectively, showcasing its substantial surface area and distinctive porous characteristics. Additionally, the Langmuir and Freundlich isotherm models were employed to examine the TC adsorption on the activated carbon, with the Langmuir model demonstrating superior suitability than the Freundlich model. Furthermore, the electrochemical performance of an activated carbon-based electrode for EDLCs was rigorously evaluated through cyclic voltammetry. The specific capacitance exhibited a considerable increase in proportion to the expanding specific surface area of the activated carbon.
The study investigated a method of synthesizing a pitch suitable for making activated carbon using fluid catalytic crackingdecant oil (FCC-DO), a high-purity carbon precursor from oil refining. We kept the reaction time and catalyst amount constant while varying the temperature to investigate its impact on pitch synthesis and the resulting physical and activation properties. Previous research established that materials added during pitch synthesis can affect the properties of both the pitch and resulting activated carbon. This study examined the addition of polyethylene terephthalate (PET) to FCC-DO-based pitch. The results indicated significant changes in properties with PET addition and temperature variation that ensured stable activated carbon quality. At temperatures of 390 °C or higher, the specific surface area of the activated carbon stabilized between 2680 and 2740 m2/ g. Waste PET, a recyclable plastic, was chosen due to its compatibility and thermodynamic suitability for pitch synthesis. Importantly, adding PET didn't generate additional waste or degrade the physical properties of the activated carbon.
본 연구에서는 식물에 의한 표면적 증가와 생리작용이 미세먼지 정화에 미치는 영향을 추정하기 위하여 대조구(Control; Type C)을 설정하고, 관엽식물(Spathiphyllum wallisii; Type P)과 인조식물(Artificial Plant; Shape of Spathiphyllum wallisii; Type A.P)을 활용하여 미세먼지 정화소요시간을 측정하고 비교ㆍ분석하였다. 그 결과, 각 실험구별 미세먼지 정화에 소요된 시간은 Type C에 비하여 Type A.P는 57~64%, Type P는 31~32% 수준으로 감소하였다. 이후, LMM(Liner Mix Model)을 활용하여 각 실험구별 시간변화에 따른 교호작용을 검정한 결과, 표면적증가와 시간변화(PM10 : t=3.123, p<0.05, PM2.5 : t=3.180, p<0.05), 생리작용과 시간변화(PM10 : t=4.065, p<0.05, PM2.5 : t=4.307, p<0.05)는 통계적으로 유의한 것으로 분석되어 각 요인과 시간변수의 교호작용이 있음을 확인할 수 있었다. 마지막으로 식물의 미세먼지 정화요인에 따른 효율은, 정화요인이 존재하지 않는 대조구(Type C)에 비하여 표면적 증가로 1.40배, 생리작용으로 1.95배, 총 평균 2.74배의 정화시간이 더 짧은 것으로 비선형회귀분석을 통해 추정하였다. 이상의 결과를 종합하여 식물체의 미세먼지 정화매커니즘 중 생리작용(방출 및 흡수 등)이 표면적 증가(흡착)보다 더 큰 영향을 미치고 있음을 예상하였으며, 이에 따라 미세먼지 정화 기능을 목적으로 하는 녹지에서 비배 및 관수관리등 녹지관리가 중요한 요인임을 피력하였다.
Western coastal area of Chungnam, including Cheonsu Bay and Garorim Bay, has suffered from hot and cold extremes. In this study, the extreme sea surface temperature on the western coast of Chungnam was analyzed using the quantile regression method, which extracts the linear regression values in all quantiles. The regional MOHID (MOdelo HIDrodinâmico) model, with a high resolution on a 1/60o grid, was constructed to reproduce the extreme sea surface temperature. For future prediction, the SSP5-8.5 scenario data of the CMIP6 model were used to simulate sea surface temperature variability. Results showed that the extreme sea surface temperature of Cheonsu Bay in August 2017 was successfully simulated, and this extreme sea surface temperature had a significant negative correlation with the Pacific decadal variability index. As a result of future climate prediction, it was found that an average of 2.9oC increased during the simulation period of 86 years in the Chungnam west coast and there was a seasonal difference (3.2oC in summer, 2.4oC in winter). These seasonal differences indicate an increase in the annual temperature range, suggesting that extreme events may occur more frequently in the future.
Ammonia is a potential fuel for producing and storing hydrogen, but its usage is constrained by the high cost of the noble metal catalysts to decompose NH3. Utilizing non-precious catalysts to decompose ammonia increases its potential for hydrogen production. In this study, carborundum (SiC)-supported cobalt catalysts were prepared by impregnating Co3O4 nanoparticles (NPs) on SiC support. The catalysts were characterized by high-resolution transmission electron microscope, X-ray photoelectron spectroscopy, temperature programmed reduction, etc. The results show that the large specific surface area of SiC can introduce highly distributed Co3O4 NPs onto the surface. The amount of Co in the catalysts has a significant effect on the catalyst structure, particle size and catalytic performances. Due to the interaction of cobalt species with SiC, the 25Co/SiC catalyst provided the optimal ammonia conversion of 73.2% with a space velocity of 30,000 mL gcat −1 h− 1 at 550 °C, corresponding to the hydrogen production rate of 24.6 mmol H2 gcat −1 min− 1. This research presents an opportunity to develop highly active and cost-effective catalysts for hydrogen production via NH3 decomposition.
Radioactive wastes, including used nuclear fuel and decommissioning wastes, have been treated using molten salts. Electrochemical sensors are one of the options for in-situ process monitoring using molten salts. However, in order to use electrochemical sensors in molten salt, the surface area must be known. This is because the surface area affects the current of the electrode. Previous studies have used a variety of methods to determine the electrode surface area in molten salts. One method of calculating the electrode surface area is to use the reduction current peak difference between electrodes with known length differences. The method is based on the reduction peak and has the benefit of providing long-term in-situ monitoring of surfaces immersed in molten salt. A number of assumptions have been made regarding this method, including that there is no mass transport by migration or convection; the reaction is reversible and limited by diffusion; the chemical activity of the deposit should be unity; and species should follow linear diffusion. For the purpose of overcoming these limitations, a variety of machine learning algorithms were applied to different voltammogram datasets in order to calculate the surface area. Voltammogram datasets were collected from multiarray electrodes, comprising a multiarray holder, two tungsten rods (1 mm diameter) working electrodes, a quasi-reference electrode, and a counter electrode. The multiarray electrode holder was connected to the auto vertical translator, which uses a servo motor, for changing the height of the rod in the molten salts. To make big and diverse data for training machine learning models, various concentrations of corrosion products (Cr, Fe) and fission products (Eu, Sm) in NaCl-MgCl2 eutectic salts were used as electrolyte; electrolyte temperatures were 500, 525, 550, 575, and 600°C. This study will demonstrate the potential of utilizing machine learning based electrochemical in situ monitoring in molten salt processing.
본 논문에서는 해상 위험유해물질(Hazardous Noxious Substances, HNS) 사고의 효과적인 대응을 위해 개발된 부유식 무인이동체 기반 광역탐지 및 모니터링 시스템의 운용 시나리오 설계와 실험 검증 내용을 보인다. 광역탐지 및 모니터링 시스템은 장시간 운용이 가 능하되 제한적 이동이 가능한 무계류형 부이 형태를 갖는 부유식 무인이동체 플랫폼을 기반으로 개발되었으며 임무 수행에 필요한 열화 상 카메라, 레이더, 부유 및 대기 HNS의 탐지를 위한 센서가 탑재되었다. 실험 검증 과정에서는 탐지 센서 성능을 야외 환경에서 실험적 으로 검증하기 위해 이동식 가스 유출 시스템(Portable Gas-exposure System, PGS)을 추가로 설치하였다. 무인 시스템의 원격 및 자율 운용을 위해 전체 운용 소프트웨어는 로봇운영체제(Robot Operating System, ROS) 프레임워크를 기반으로 통합되었다. 내수면 및 실해역에서의 실 험을 통해 개발된 시스템의 운용 및 활용 가능성을 실험적으로 검증하였다.
Pyrolysis fuel oil (PFO) is used for the manufacturing of high-purity pitch for carbon precursor due to its high carbon content, high aromaticity, and low heterogeneous element and impurity content. Pitch is commonly classified with its softening point, which is most considerable physical property affecting to various characteristics of the carbon materials based on pitch, such as electrical and thermal conductivity, mechanical strength, and pore property. Hence, the softening point should be controlled to apply pitch to produce various carbon materials for different applications. Previous studies introduce reforming process under high pressure and two step heat treatment for the synthesis of pitch with high softening point from PFO. These methods lead to a high process cost; therefore, it is necessary to develop a process to synthesize the pitch with high softening point by using energy effective process at a low temperature. In this study, waste polyethylene terephthalate (PET) was added to control the softening point of PFO-based pitch. The pitch synthesized by the heat treatment with the addition of PET showed the softening point higher than that of the pitch synthesized with only PFO. The softening point of PFObased pitch synthesized at 420 °C was 138.3 °C, while that of the pitch synthesized by adding PET under the same process conditions was 342.8 °C. It is proposed that the effect of the PET addition on the increase in the softening point was due to the radicals generated from thermal degradation of PET. The radicals from PET react with the PFO molecules to promote the polymerization and finally increase the molecular weight and softening point of the pitch. In addition, activated carbon was prepared by using the pitch synthesized by adding PET, and the results showed that the specific surface area of the activated carbon increased by the addition of PET. It is expected that the pitch synthesis method with PET addition significantly contributes to the manufacture of pitch and activated carbon.
어류 양식장 퇴적물 중 유기물과 중금속의 오염상태를 파악하기 위하여 통영-거제 연안 어류 양식장 퇴적물 중 총유기탄소 (TOC), 총질소(TN), 중금속(As, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn)을 조사하였다. 양식장 퇴적물 중 TOC와 TN의 평균농도는 각각 22.7 mg/g과 3.4 mg/g로 남해안의 반폐쇄적인 내만보다 높았다. 퇴적물 중 중금속의 평균농도는 비소(As) 10.5 mg/kg, 카드뮴(Cd) 0.37 mg/kg, 크롬(Cr) 82.9 mg/kg, 구리(Cu) 127 mg/kg, 철(Fe) 4.19 %, 수은(Hg) 0.041 mg/kg, 망간(Mn) 596 mg/kg, 납(Pb) 39.5 mg/kg, 아연(Zn) 175 mg/kg였으며, 이중 Cd, Cu의 농도는 인접한 남동해 연안의 패류양식해역보다 3배 이상 높았다. 퇴적물 기준을 이용한 오염평가 결과, 대부분의 어류 양식장에서 TOC와 중금속 중 Cu 농도가 기준을 초과하는 것으로 나타났다. 또한, 전체 중금속 농도를 고려한 오염부하량지수(PLI)와 생태계위해 도지수(ERI) 결과는 일부 어류 양식장 퇴적물이 저서생물에 극심한 부정적인 생태 영향을 줄 수 있는 상태(disastrous risk)인 것으로 파악되었다. 따라서, 어류 양식장 퇴적물은 유기물 및 일부 중금속에 의한 오염된 상태를 보이고 있어, 양식장 퇴적환경을 개선하고 퇴적물내 유기물 및 중금속의 주된 오염원을 파악하는 한편 오염부하량을 저감하는 종합적인 관리대책이 필요하다.
Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method’s feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450˚C when the green area ratio increased by 1% and increased by 0.0321˚C when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.
Upgraded activated carbons (ACs) are typically synthesized by mixed methods, such as solid–solid mixing and wet impregnation of low-grade ACs with KOH. This study compares the properties of upgraded ACs prepared by different methods using elemental analysis, X-ray photoelectron spectroscopy, N2 adsorption isotherms, and X-ray diffraction. In ACs produced by the solid–solid mixing, the ratio of potassium activator is proportional to the surface area and amount of gas produced. However, in wet impregnated ACs, the potassium ratio exhibits a zero or negative correlation. It is demonstrated that potassium ions in solution are not transferred to K2O and do not contribute to the surface area and pore size, generating less amount and different composition of gases. As such, impregnated ACs exhibit similar surface areas and large pores, regardless of the potassium ratio. The physical properties, such as specific surface areas and pore size distribution, of ACs using wet impregnation were similar to the ACs generated by the water physical activation. It indicated that the KOH does not efficiently act as a chemical activator in the wet impregnation method. Therefore, a certain amount and suitable mixing method of chemical activator play an important role in the property upgrade of ACs.