For the OPR1000, a standard power plant in Korea, an analytical model of the containment building considering voids and deterioration was built with multilayer shell elements. Voids were placed in the vulnerable parts of the analysis model, and the deterioration effects of concrete and rebar were reflected in the material model. To check the impact of voids and deterioration on the seismic performance of the containment building, iterative push-over analysis was performed on four cases of the analytical model with and without voids and deterioration. It was found that the effect of voids with a volume ratio of 0.6% on the seismic performance of the containment building was insignificant. The effect of strength reduction and cross-sectional area loss of reinforcement due to deterioration and the impact of strength increase of concrete due to long-term hardening offset each other, resulting in a slight increase in the lateral resistance of the containment building. To determine the limit state that adequately represents the seismic performance of the containment building considering voids and deterioration, the Ogaki shear strength equation, ASCE 43-05 low shear wall allowable lateral displacement ratio, and JEAC 4601 shear strain limit were compared and examined with the analytically derived failure point (ultimate point) in this study.
The presence of technological voids in deep geological repositories for high-level radioactive nuclear waste can have negative effects on the hydro-mechanical properties of the engineered barrier system when groundwater infiltrates from the surrounding rock. This study conducted hydration tests along with image acquisition and X-ray CT analysis on compacted Korean bentonite samples, which simulated technological voids filling to investigate the behavior of fracturing (piping erosion) and cracking deterioration. We utilized a dual syringe pump to inject water into a cell consisting of a bentonite block and technological voids at a consistent flow rate. The results showed that water inflow to fill technological voids led to partial hydration and self-sealing, followed by the formation of an erosional piping channel along the wetting front. After the piping channel generated, the cyclic filling-piping stage is characterized by the repetitive accumulation and drop of water pressure, accompanied by the opening and closing of piping channels. The stoppage of water inflow leads to the formation of macro- and micro cracks in bentonite due to moisture migration caused by high suction pressure. These cracks create preferential flow paths that promote longterm groundwater infiltration. The experimental test and analysis are currently ongoing. Further experiments will be conducted to investigate the effects of different dry density in bentonite, flow rate, and chemical composition of injected water.
In recent years, there have been applied methods for minimizing noise by adjusting the method of installing soundproof walls, soundproof tunnels, soundproofing rims, environmental facilities, etc., and the shape of the surface texture of tire treads and packaging materials for the purpose of reducing road noise. Low noise pavement methods such as rubber asphalt (CRM), open graded asphalt concrete (OGAC), permeable Friction Courses (PFC), open graded friction courses (OGFC) and porous asphalt have been applied to reduce road noise. Especially, porous pavement is the most widely used low noise pavement with porous structure, which can reduce noise and drain water through continuous void of pavement. On the other hand, porous asphalt pavement has problems such as reduction of noise reduction effect and difficulty of road surface management due to void closing and increase of construction cost. The purpose of this study is to develop ultra-thin layer hot mix asphalt pavement method which maximizes road noise reduction effect by surface micro voids (Recover asphalt pavement) to improve void clogging of present porous pavement method. For this study, maximum size 5mm aggregate and cationic-treated fiber reinforced asphalt modifier (CSM) were used. The Marshall design method was applied grain-size distribution curve was based on SMA mix design. Marshall test, TSR, MMLS3 test and Hamburg test were carried out to evaluate the mechanical properties of ultra -thin layered asphalt pavement method with surface micro voids. Also, the effect of road noise reduction was evaluated through field application in urban area.
PURPOSES: The objective of this study was to determine the relationship between the dielectric characteristics of asphalt mixtures and the air voids present in them using ground penetrating radar (GPR) testing.
METHODS : To measure the dielectric properties of the asphalt mixtures, the reflection coefficient method and the approach based on the actual thickness of the asphalt layer were used. An air-couple-type GPR antenna with a center frequency of 1 GHz was used to measure the time for reflection from the asphalt/base layer interface. A piece of aluminum foil was placed at the interface to be able to determine the reflection time of the GPR signal with accuracy. An asphalt pavement testbed was constructed, and asphalt mixtures with different compaction numbers were tested. After the GPR tests, the asphalt samples were cored and their thicknesses and number of air voids were measured in the laboratory.
RESULTS: It was found the dielectric constant of asphalt mixtures tends to decrease with an increase in the number of air voids. The dielectric constant values estimated from the reflection coefficient method exhibited a slight correlation to the number of air voids. However, the dielectric constant values measured using the approach based on the actual asphalt layer thickness were closely related to the asphalt mixture density. Based on these results, a regression equation to determine the number of air voids in asphalt mixtures using the GPR test method was proposed.
CONCLUSIONS: It was concluded that the number of air voids in an asphalt mixture can be calculated based on the dielectric constant of the mixture as determined by GPR testing. It was also found that the number of air voids was exponentially related to the dielectric constant, with the coefficient of determination, R2, being 0.74. These results suggest that the dielectric constant as determined by GPR testing can be used to improve the construction quality and maintenance of asphalt pavements.
PURPOSES : The objective of this study is to determine the optimal frequency of ground penetrating radar (GPR) testing for detecting the voids under the pavement. METHODS : In order to determine the optimal frequency of GPR testing for void detection, a full-scale test section was constructed to simulate the actual size of voids under the pavement. Voids of various sizes were created by inserting styrofoam at varying depths under the pavement. Subsequently, 250-, 500-, and 800-MHz ground-coupled GPR testing was conducted in the test section and the resulting GPR signals were recorded. The change in the amplitude of these signals was evaluated by varying the GPR frequency, void size, and void depth. The optimum frequency was determined from the amplitude of the signals. RESULTS: The capacity of GPR to detect voids under the pavement was evaluated by using three different ground-coupled GPR frequencies. In the case of the B-scan GPR data, a parabolic shape occurred in the vicinity of the voids. The maximum GPR amplitude in the A-scan data was used to quantitatively determine the void-detection capacity. CONCLUSIONS: The 250-MHz GPR testing enabled the detection of 10 out of 12 simulated voids, whereas the 500-MHz testing allowed the detection of only five. Furthermore, the amplitude of GPR detection associated with 250-MHz testing is significantly higher than that of 500-MHz testing. This indicates that 250-MHz GPR testing is well-suited for the detection of voids located at depths ranging from 0.5~2.0 m. Testing at frequencies lower than 250 MHz is recommended for void detection at depths greater than 2 m.
Recently, cosmic voids have been recognized as a powerful cosmological probe. A number of studies have focused on the effects of the gravitational lensing by voids on the temperature (and in some cases polarization) anisotropy of the Cosmic Microwave Background (CMB) background at relatively large to medium scales, l ~ 1000. Many of these studies attempt to explain the unusually large cold spot in CMB temperature maps and dynamical evidence of dark energy via detections of late-time integrated Sachs Wolfe (ISW) effect. Here, the effects of lensing by voids on the CMB temperature anisotropy at small scales, up to l = 3000, will be investigated. This work is carried out in the light of the benefits of adding large catalogues of cosmic voids, to be identified by future large galaxy surveys such as EUCLID and LSST, to the analysis of CMB data such as those from Planck mission. Our numerical simulation utilizes two methods, namely, the small-de ectionangle approximation and full ray-tracing analysis. Using the fitted void density profiles and radius (RV ) distribution available in the literature from N-body simulations, we simulated the secondary temperature anisotropy (lensing) of CMB photons induced by voids along a line of sight from redshift 0 to 2. Each line of sight contains approximately 1000 voids of effective radius RV;eff = 35 h-1Mpc with randomly distributed radial and projected positions. Both methods are used to generate temperature maps. The two methods will be compared for their accuracy and effciency in the implementation of theoretical modeling.
Light scattering enhancement is widely used to enhance the optical absorption efficiency of dye-sensitized solar cells. In this work, we systematically analyzed the effects of spherical voids distributed as light-scattering centers in photoanode films made of an assembly of zinc oxide nanoparticles. Spherical voids in electrode films were formed using a sacrificial template of polystyrene (PS) spheres. The diameter and volume concentration of these spheres was varied to optimize the efficiency of dye-sensitized solar cells. The effects of film thickness on this efficiency was also examined. Electrochemical impedance spectroscopy was performed to study electron transport in the electrodes. The highest power conversion efficiency of 4.07 % was observed with 12μm film thickness. This relatively low optimum thickness of the electrode film is due to the enhanced light absorption caused by the light scattering centers of voids distributed in the film.
PURPOSES: This research is to evaluate the mechanical performance of different types of Hot Mix Asphalt (HMA) pavement cells prepared for MN/Road field testing section through an extensive experimental analysis of air voids and simple statistical evaluation tools (i.e. hypothesis test). METHODS: An extensive experimental work was performed to measure air voids in 82 asphalt mixture cores (238 samples in total) obtained from nine different types of road cell located in MN/Road testing field. In order to numerically and quantitatively address the differences in air voids among the different test Cells built in MN/Road, a simple statistical test method (i.e. t-test) with 5% significance was used. RESULTS: Similar trends in air voids content were found among the mixtures including conventional HMA, Reclaimed Asphalt Pavement (RAP) and Warm Mix Asphalt (WMA) combined with taconite aggregate this provides support to the use of RAP and WMA technology in the constructions of asphalt pavement. However, in case of acid modified HMA mixtures, significant differences in air void content were observed between on the wheel path and between wheel path location, which implies negative performances in rutting and thermal cracking resistances. Conclusions : It can be concluded that use of RAP and WMA technology in the construction of conventional asphalt pavement and the use of PPA (Poly Phosphoric Acid) in combinations with SBS (Styrene Butadiene Styrene) in asphalt binder production provide satisfactory performance and, therefore, are highly recommended
We searched for X-ray emission from the 665 galaxies inside and towards the nearby voids by analyzing the ROSAT All-Sky Survey (RASS) data as well as the ROSAT pointed observations (PSPC). As a result we have detected six X-ray emitting galaxies. Two (UGC 10205 and NGC 7509) are in the high density region in the local void, three (UGC 749, MCG +11-10-073, and Mrk 464) are towards the nearby voids, and UGC 32 is located in the low density region. We carried out a timing analysis for both Mrk 464 and UGC 32, and a spectral analysis for Mrk 464. The light curve of Mrk 464 shows the possibility of periodic X-ray flux variation and UGC 32 shows weak, but rapid variation.
Recent earthquakes in Gyeong-ju and Po-hang have raised concerns about the safety of nuclear power plant structures. In particular, there is a demand for a technique for detecting and evaluating the deterioration that occurs in the concrete which is inaccessible after curing. In this paper, we propose a method for evaluating the reliability of concrete detection equipment using ultrasound, as the ultrasonic tomography technique has been attracting much attention with the detection technique of the inside of concrete.
This paper presents the image processing technique for analyzing quantitatively air voids in paste. From the test, the performance of proposed technique was verified.