간행물

한국방사성폐기물학회 학술논문요약집 Abstracts of Proceedings of the Korean Radioactive Wasts Society

권호리스트/논문검색
이 간행물 논문 검색

권호

2023 추계학술논문요약집 (2023년 11월) 429

181.
2023.11 구독 인증기관·개인회원 무료
With the importance of permanent disposal of high-level radioactive waste (HLW) generated in Korea, the deep geological disposal system based on the KBS-3 type is being developed. Since the deep geological repository must provide the long-term isolation of HLW from the surface environment and normal habitats for humans, plants, and animals, it is essential to assess the longterm performance of the disposal facility considering thermal-hydraulic-mechanical-chemical (TH- M-C) evolution. Decay heat dissipated from HLW contained in the canister causes an increase in temperature in the adjacent area. The requirement for the maximum temperature is established in consideration of the possibility of bentonite degradation. Therefore, when designing the repository, the temperature in the region of interest should be identified in detail through the thermal evolution assessment to ensure that the design requirement is satisfied. In the thermal evolution analysis, it is needed to evaluate the temperature distribution over the entire area of the disposal panel to consider the heat generated from both a single canister and adjacent canisters. Computational fluid dynamics (CFD) codes are widely used for detailed temperature analysis but are limited to simulating a wide range. Accordingly, in this study, we developed an analytical solution-based program for efficiently calculating the temperature distribution throughout the deposition panel, which is based on threedimensional heat conduction equations. The code developed can assess the temperature distribution of engineered and natural barrier systems. Principal parameters to be inputted are as follows: (a) geometry of the panel (e.g. width, length, height, spacing between canisters), (b) geometry of the canister (e.g. diameter, height), (c) thermal properties of bentonite and host-rock, (d) initial conditions (e.g. residual heat, temperature), and (e) time information (e.g. canister emplacement rate, time-interval, period). Through the calculation for the conceptual problem of a deposition panel capable of accommodating 900 (i.e. 30×30) canisters, it was confirmed that the program can adequately predict when and where the maximum temperature will occur. It is expected that the overall temperature distribution within the panel can be obtained by the evaluation of the entire region using this program reflecting the detailed design of the repository to be developed in the future. In addition, the thermal evolution analysis considering the influence of other canisters can be performed by applying the results as boundary conditions in the CFD analysis.
182.
2023.11 구독 인증기관·개인회원 무료
The buffer is installed around the disposal canister, subjected to heating due to decay heat while simultaneously experiencing expansion influenced by groundwater inflow from the surrounding rock. The engineering barrier system for deep geological disposal require the evaluation of longterm evolution based on the verification of individual component performance and the interactions among components within the disposal environment. Thus, it is crucial to identify the thermalhydro- mechanical-chemical (THMC) processes of the buffer and assess its long- and short-term stability based on these interactions. Therefore, we conducted experimental evaluations of saturationswelling, dry heating, gas transport, and mineralogical alterations that the buffer may undergo in the heated-hydration environment. We simulated a 310 mm-thick buffer material in a cylindrical form, simulating the domestic disposal system concept of KRS+ (the improved KAERI reference disposal system for spent nuclear fuel), and subjected it to the disposal environment using heating cartridges and a hydration system. To monitor the thermal-hydro-mechanical behavior within the buffer material, load cells were installed in the hydration section, and both of thermal couples and relative humidity sensors were placed at regular intervals from the heat source. After 140 days of heating and hydration, we dismantled the experimental cell and conducted post-mortem analyses of the samples. In this post-mortem analysis, we performed functions of distance from the water contents, heat source, wet density, dry density, saturation, and X-Ray diffraction analysis (XRD). The results showed that after 140 days in the heated-hydration environment, the samples exhibited a significant decrease water contents and saturation near the heat source, along with very low wet and dry densities. XRD Quantitative Analysis did not indicate mineralogical changes. The findings from this study are expected to be useful for input parameters and THMC interaction assessments for the long-term stability evaluation of buffer in deep geological disposal.
183.
2023.11 구독 인증기관·개인회원 무료
Montmorillonite, a versatile clay mineral with a wide range of industrial applications, is often found in natural deposits with impurities that limit its effectiveness. This study investigates the use of column froth flotation as an innovative technique to improve the purity of montmorillonite by selectively removing impurities without affecting its essential properties. Column froth flotation, a well-established mineral separation method, is adapted to address the specific challenges associated with enhancing montmorillonite purity. The process involves conditioning raw montmorillonite with carefully chosen reagents to selectively separate impurities, including quartz, feldspar, and other minerals commonly found alongside montmorillonite in natural deposits. Experimental results confirm the effectiveness of column froth flotation in significantly enhancing the purity of montmorillonite. This method allows for efficient impurity removal while preserving the essential properties of montmorillonite, making it suitable for various industrial applications. The study also explores the optimal conditions and reagent choices to maximize the purification process. In conclusion, column froth flotation offers a promising avenue for enhancing montmorillonite purity without compromising its fundamental properties. This study provides valuable insights into optimizing the process for large-scale industrial applications, facilitating the development of highquality montmorillonite products tailored to specific industrial needs.
184.
2023.11 구독 인증기관·개인회원 무료
It is crucial to understand the hydro-mechanical behavior of rock mass to assess the performance of natural barriers. As rock fractures serve as both mechanically weak planes and prominent pathways for hydraulic flow, they significantly influence the hydro-mechanical behavior of the rock mass. Hence, understanding the characteristics of rock fractures is necessary to analyze the long-term behavior of natural barriers. In particular, fracture apertures are crucial parameters directly associated with groundwater flow and consequently hold significant importance in determining the hydro-mechanical behavior of natural barriers. Fracture apertures are defined as mechanical and hydraulic apertures, and various studies have been conducted to measure and analyze them. However, direct measurement of mechanical aperture according to changes in normal stress is known to be a challenging task. For this reason, there has been a scarcity of direct comparative findings between mechanical and hydraulic apertures under various normal stress conditions. This study aims to analyze the characteristics of the mechanical and hydraulic apertures according to changes in normal stress based on experimental results. A digital analysis technique using a pressure film image was applied to analyze the mechanical aperture characteristics of the fracture. This technique can be applied by performing a pressure film compression test and a normal stiffness test on a fracture specimen, and has the advantage of being able to derive mechanical apertures under various normal stress conditions. The hydraulic aperture characteristics of the fracture were analyzed based on Cubic law after measuring the flow rate by performing a constant pressure injection test under triaxial compression conditions. By applying various confining pressures, it was possible to examine the hydraulic apertures according to changes in normal stress conditions. Through the experimental results, the relationship between the mechanical and hydraulic apertures of the fracture was summarized under various normal stress conditions. In addition, the experimental results were used to examine the applicability of various empirical equations for mechanical and hydraulic apertures proposed in previous studies. The characteristics of the fracture aperture resulting from this study are significant because they are required in the hydro-mechanical model of natural barriers. Future studies will entail further experiments, with the objective of establishing novel relationships based on the accumulation of experimental data.
185.
2023.11 구독 인증기관·개인회원 무료
The effectiveness of a crystalline natural barrier in providing sealing capabilities is based on the behavior of numerous fractures and their intersections within the rock mass. It is important to evaluate the evolving characteristics of fractured rock, as the hydro-mechanical coupled processes occurring through these fractures play a dominant role. KAERI is actively developing a true tri-axial compression test system and concurrently conducting hydro-mechanical experiments using replicated fractured rock samples. This research is focused on a comprehensive examination of coupled processes within fractures, with a particular emphasis on the development of true tri-axial testing equipment. The designed test system has the capability to account for three-dimensional stress conditions, including vertical and both maximum and minimum horizontal principal stresses, realizing the disposal conditions at specific underground depths. Notably, the KAERI-designed test system employs the mixed true tri-axial concept, also known as the Mogi-type, which allows for fluid flow into fractures under tri-axial compression conditions. This system utilizes a hydraulic chamber to maintain constant stress in one direction through the application of oil pressure, while the other two directional stresses are applied using rigid platens with varying magnitudes. Once these mechanical stress conditions are established, control over fluid flow is achieved through the rigid platens in contact with the specimen section. This pioneering approach effectively replicates in-situ mechanical conditions while concurrently observing the internal fluid flow patterns within fractures, thereby enhancing our capacity to study these coupled phenomena. As future research, numerical modeling efforts will be proceeding with experimental data-driven approaches to simulate the coupled behavior within the fractures. In these numerical studies, two distinct fracture geometry domains will be generated, one employing simplified rough-walled fractures and the other utilizing mismatched rough-walled fractures. These investigations mark the preliminary steps in the process of selecting and validating an appropriate numerical model for understanding the hydro-mechanical evolution within fractures.
186.
2023.11 구독 인증기관·개인회원 무료
In the nuclear environment, sensors ensure safety, monitoring, and operational efficiency under various operating conditions. These sensors come in various forms, each tailored to specific purposes, including nuclear safety and security, waste treatment and storage, gas leak detection, temperature and humidity monitoring, and corrosion detection. Ensuring the longevity of sensors without the need for frequent replacements is a vital goal for researchers in this field. This paper explores materials that can act as shields to protect sensors from harsh environmental conditions (high radiation and temperatures) to enhance their lifetime. The types of material that had been explored were divided into categories: metal and non-metal. Fourteen types of metal and seven different plastic materials were studied and focused on their characteristics and current applications. Considering properties like melting point, intensity, and conductivity, plastic materials are chosen to be examined as sensor shielding material. A preliminary experiment was conducted to verify signal characteristics changes by shielding material. Metal material and plastic material each were placed in the middle of the granite and the target sensor. The result showed that when metal is between the granite and the sensor, the density and impedance are higher in granite than in the metal. This leads to signal attenuation and a shift in resonance frequency, while plastic does not. Therefore, PPS (Polyphenylene sulfide) and PAI (Polyamide-imide) have lower density and impedance than granite while also possessing heat, moisture, and radiation resistance for effective shielding.
187.
2023.11 구독 인증기관·개인회원 무료
Conducting a TSPA (Total System Performance Assessment) of the entire spent nuclear fuel disposal system, which includes thousands of disposal holes and their geological surroundings over many thousands of years, is a challenging task. Typically, the TSPA relies on significant efforts involving numerous parts and finite elements, making it computationally demanding. To streamline this process and enhance efficiency, our study introduces a surrogate model built upon the widely recognized U-network machine learning framework. This surrogate model serves as a bridge, correcting the results from a detailed numerical model with a large number of small-sized elements into a simplified one with fewer and large-sized elements. This approach will significantly cut down on computation time while preserving accuracy comparable to those achieved through the detailed numerical model.
188.
2023.11 구독 인증기관·개인회원 무료
Copper, mainly used as a material for outer canister, generates various corrosion products under aerobic and anaerobic conditions in the operational and/or post-closure phases of the deep geological repository. These products could affect performance of engineering barrier system (EBS) through interaction with surrounding bentonite that makes up the buffer and backfill materials. Accordingly, in this study, we suggested research items to be conducted to minimize degradation of EBS due to copper corrosion products, based on the phenomenological review results for copper corrosion mechanisms and interaction between resultant product and bentonite in the deep geological disposal environment. During the post-closure phase, condition in the disposal facility changes form aerobic to anaerobic over time, and thereby, causes and products of copper corrosion vary. Under aerobic condition, copper corrosion is mainly induced by oxygen (O2) in the repository, chloride (Cl-) and carbonate (CO3 2-) ions from groundwater flowing into the facility, resulting in corrosion products such as cuprite (Cu2O), tenorite (CuO), atacamite (CuCl2·3Cu(OH)2) and malachite (Cu2CO3(OH)2). And, copper corrosion under anaerobic condition is primarily due to hydrogen sulfide (H2S) and sulfate (SO4 2-) in groundwater flowing into the facility, leading to formation of chalcocite (Cu2S) and covellite (CuS) as corrosion products. Depending on environment of the disposal facility, copper corrosion products are dissolved and ionized to Cu2+ in groundwater, and subsequently adsorbed on the nearby smectite. Then, it causes a cation exchange reaction with exchangeable cations in the interlayer of smectite. As a result of reviewing the previous experiments, it was confirmed that Cu2+-exchanged bentonite has a slightly reduced basal spacing and swelling capacity. From the results as above, there is a possibility that performance of EBS may be degraded due to copper corrosion products. To minimize its effect of degradation in the domestic facility, items to be further studied are as follows: (a) Method for reducing copper corrosion such as selection of appropriate material and structure for the canister, and (b) How to control dissolution of copper canister product into groundwater through predicting type and ionization process. The results of this study could be directly used to developing design concept of EBS for the domestic disposal facility and to establishing roadmap of future R&D programs.
189.
2023.11 구독 인증기관·개인회원 무료
The Korea Atomic Energy Research Institute (KAERI) is currently developing a process-based performance assessment model known as APro. Distinguished from the previous system-level safety assessment model developed by KAERI, APro exhibits the capacity to encompass a threedimensional biosphere domain, evolving over the long term. In this study, we elucidate the methodology employed in developing the dose assessment module of APro and present the module’s functionalities. The procedural steps underlying radiation dose calculations within the APro framework can be succinctly outlined as follows: 1) Definition of a landscape model, utilizing information derived from a specified snapshot period provided by the APro biosphere transport module; 2) Generation of unit biotope objects spanning the landscape; 3) Evaluation of radionuclide transfer within the soil medium; 4) Calculation of activity concentration for flora and fauna groups; 5) Assessment of the distribution of effective dose among representative human groups; 6) Progressing through successive time steps. The APro dose calculation module exhibits notable capabilities that encompass: 1) Accounting for radionuclide decay and ingrowth; 2) Facilitating transfer through unsaturated porous media; 3) Considering sorption effects; 4) Addressing the inheritance of radioactivity between various landscape models; 5) Offering customizable ecosystem parameters; 6) Providing flexibility for user-defined exposure pathways. Leveraging these functionalities of the dose assessment module, APro is proficient in evaluating the distribution of radiological doses and associated risks for representative population groups, all while accounting for the dynamic, long-term evolution of the biosphere, including alterations in land cover.
190.
2023.11 구독 인증기관·개인회원 무료
Understanding the long-term geochemical evolution of engineered barrier system is crucial for conducting safety assessment in high-level radioactive waste disposal repository. One critical scenario to consider is the intrusion of seawater into the engineered barrier system, which may occur due to global sea level rise. Seawater is characterized by its high ionic strength and abundant dissolved cations, including Na, K, and Mg. When seawater infiltrates an engineered barrier, such dissolved cations displace interlayer cations within the montmorillonite and affect to precipitation/ dissolution of accessory minerals in bentonite buffer. These geochemical reactions change the porewater chemistry of bentonite buffer and influence the reactive transport of radionuclides when it leaked from the canister. In this study, the adaptive process-based total system performance assessment framework (APro), developed by the Korea Atomic Energy Research Institute, was utilized to simulate the geochemical evolution of engineered barrier system resulting from seawater intrusion. Here, the APro simulated the geochemical evolution in bentonite porewater and mineral composition by considering various geochemical reactions such as mineral precipitation/dissolution, temperature, redox processes, cation exchange, and surface complexation mechanisms. The simulation results showed that the seawater intrusion led to the dissolution of gypsum and partial precipitation of calcite, dolomite, and siderite within the engineered barrier system. Additionally, the composition of interlayer cation in montmorillonite was changed, with an increase in Na, K, and Mg and a decrease in Ca, because the concentrations of Na, K, and Mg in seawater were 2-10 times higher than those in the initial bentonite porewater. Further studies will evaluate the geochemical sorption and transport of leaked uranium-238 and iodine-129 by applying TDB-based sorption model.
191.
2023.11 구독 인증기관·개인회원 무료
The seven-year research project entitled “Development of workflow for integrated 3D geological site descriptive modeling” is being carried out from 2023. This research is funded by Ministry of Trade, Industry, and Energy (MOTIE). Progress of the research is discussed here. The integrated 3D geological SDM (site descriptive model; GSDM hereafter) consists of three part; 1) three dimensional representation of geologic elements, 2) database for material properties and modeling results from SDMs of other disciplines (e.g., rock mechanics), and 3) a visualization tool for geology, material properties and modeling results. The GSDM is comparable to the GDSMs of SKB and POSIVA in its representation of geology by volume of geologic elements. However, our GSDM is different in that extra information of material properties and an extra tool for visualization is included in the GDSM. The rationale for incorporating material properties and a visualization tool into the GSDM is to expedite the development of the GSDM and SDMs of other disciplines by allowing single institution to integrate database and visualization with the GSDM. SKUA-GOCAD is used for representation of geologic surfaces for ductile and brittle shear zones, and also for surfaces for delineation of volumes of rock units. We have adopted SKUAGOCAD because the program offers powerful functions of interpolation including borehole data and geophysical prospecting. So far, we have tested the program for five different geologies, including sedimentary, high-grade metamorphic, and intrusive igneous geology. The test results are promising. Incorporation of data and modeling results for the SDMs of other disciplines is at conceptual stage. The working conceptual model involves the following steps, 1) to provide the modeler of other disciplines with surface information representing geologic elements, 2) the modeler returns not only material properties but the results of numerical analysis, and 3) incorporation of material properties and modeling results into database. Since the numerical codes in other disciplines adopt different types of formats for 3D geology, we plan to adopt the widely used FEM format prepared by Gmsh. The visualization tool will also adopt Gmsh for graphical representation of 3D geology as well as database for material properties and modeling results. When the working model of GSDM becomes available, rapid and significant progress is expected in the SDMs of other disciplines and related areas, for example, geotechnical investigation for deep geological repository.
192.
2023.11 구독 인증기관·개인회원 무료
In the evaluation of the stability of radioactive waste disposal, it is imperative to take into account the concept of the redox front. Initially, this front is typically observed near the surface. However, if the hydraulic gradient increases due to the construction of a disposal facility, the redox front can potentially transport deeper into the geological environment through groundwater flow. This transport triggers changes in the geochemical characteristics, potentially diminishing the natural buffering capacity of the bedrock. Consequently, it is necessary to characterize both the unsaturated and saturated zones in the disposal site. In this context, a tracer test is a useful method to identify the characteristics of the site from the surface to the deep geological environment where the disposal facility can be located. Therefore, this study also aims to establish a methodology enabling a comprehensive understanding of the hydrogeochemical characteristics through the tracer test that can be applied to future sites for research URL (Underground Research Laboratory) or radioactive waste disposal in Korea. For the tracer test, a UNIT (UNsaturated zone Insitu Test facility) was built within the KAERI and five wells with a depth of 24 m were installed in 2022. Before conducting the test, to determine the geochemical background characteristics of the site, topsoil and soils at depths of 30 cm, 60 cm, and 90 cm were collected. Additionally, a groundwater sample was obtained from the newly installed well. Soil samples were analyzed for soil texture, moisture content, total and exchange cations, anions, and heavy metals. Similarly, the groundwater sample was analyzed for cations, anions, and trace elements. The outcomes of these comprehensive analyses will serve as the baseline values in the hydrogeochemical changes after the tracer test. This includes changes in soil composition, water quality, precipitation/dissolution processes, and mineral phases. Furthermore, these results will be provided as input parameters for surface-underground interface models in future studies.
193.
2023.11 구독 인증기관·개인회원 무료
The high-level nuclear waste (HLW) repository disposes of high-level nuclear waste at a depth of 500 m to 1,000 m underground. Structural health monitoring must be accompanied by the complex environmental conditions of high temperature, high humidity, radiation, and mechanical stress. A thermocouple for measuring temperature, total stress meter and pore pressure meter for measuring stress and water pressure, relative hygrometer and electrical resistivity sensor (TDR or SUS) for measuring humidity, accelerometer for measuring crack signals, and strain gauge for measuring displacement are used. For safety, after disposing of HLW in the HLW repository, access to the disposal tunnel gets blocked, making it impossible to replace or remove the monitoring sensors. So, it is necessary to evaluate the effect of the HLW repository’s environmental conditions on the monitoring sensors and enhance their durability through quantitative life evaluation and shielding. Before evaluating the life of accelerometers and strain gauges used in the HLW repository, an experimental study is conducted to determine failure modes and failure mechanisms under radiation conditions, which are unique environmental conditions of the HLW repository.
194.
2023.11 구독 인증기관·개인회원 무료
The increasing accumulation of spent nuclear fuel has raised interest in High-Level Waste (HLW) repositories. For example, Sweden is under construction of the KBS-3 repository. To ensure the safety of such HLW repository, various countries have been developing assessment models. In the Republic of Korea, the Korea Atomic Energy Research Institute has been developing on the AKRS model. However, traditional safety assessment models have not considered the fracture growth in the far-field host rock as a function of time. As repository safety assessments guarantee safety for million years, sustained stress naturally leads to the progressive growth of fractures as time goes on. Therefore, it becomes essential to account for fracture growth in the surrounding host rock. To address this, our study proposes a new coupling scheme between the Fracture growth model and the radionuclide transport model. That coupling scheme consists of the Cubic Law model as a fracture growth function and the GoldSim code which is a commercial software for radionuclide transport calculations. The model that adopting such fracture growth functions showed an increase of up to 15% in the release of radionuclide compared to traditional assessment models. our observations indicated that crack growth as a function of time led to an increase in hydraulic conductivity that allowed more radionuclide transport. Notably, these findings show the significance of adopting fracture growth models as a critical element in evaluating the safety of nuclear waste repositories.
195.
2023.11 구독 인증기관·개인회원 무료
For the performance and safety assessments of deep geological disposal, developing scenarios, which represent possible long-term changes in the surface environment, is required. These scenarios are formulated using a list of FEPs (Features, Events, and Processes) that describes characteristics of disposal system components. In this study, using international FEP (IFEP) list from OECD/NEA, the individual FEPs related to uplift-subsidence and erosion-deposition were analyzed, and the correlation between each FEP was evaluated. From the IFEP list, the elements related to uplift-subsidence and erosion-deposition processes that cause long-term changes in the surface environment were identified. Uplift-subsidence, erosion - deposition, and the long-term change factors caused by them were analyzed and a correlation diagram was produced according to their interactions. Basis for the integrated analysis of long-term changes in the surface environment and the construction of long-term change scenarios were established considering the evaluation of the factors that cause uplift-subsidence and erosiondeposition, and their correlation with the hydrology-hydrogeology, topography and local climate of the affected surface. The results of this study will be used for systematically formulating scenarios of long-term changes in the surface environment due to uplift-subsidence and erosion-deposition based on natural phenomena. And, it may be necessary to modify and supplement the correlation of domestic FEPs based on the correlation diagram of IFEPs in order to analyze long-term changes in the surface environment in an integrated manner.
196.
2023.11 구독 인증기관·개인회원 무료
The disposal of spent nuclear fuel (SNF) in a deep geological repository (DGR) is a widely accepted strategy for the long-term sequestration of radiotoxic SNF. Ensuring the safety of a DGR requires the prediction of various reactions and migration behaviors of radionuclides (RNs) present in SNF within its geochemical surroundings. Understanding the dissolution behaviors of mineral phases harboring these RNs is crucial, as the levels of RNs in groundwater are basically linked to the solubility of these solid phases. Accurate measurements of solubility demand the use of welldefined solid materials characterized by chemical compositions and structures. Herein, we attempted the synthesis of sklodowskite, a magnesium-uranyl (U(VI))-silicate, employing a twostep hydrothermal synthetic approach documented previously. Subsequently, we subjected this synthesized sklodowskite to various analytical techniques, including powder X-ray diffraction (pXRD), scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), and vibrational spectroscopies (FTIR and Raman). Based on our findings, we confidently identify the obtained mineral phase as sklodowskite (Mg[UO2SiO3OH]2·5H2O). This identification is primarily based on the similarity between its pXRD pattern and the reference XRD pattern of sklodowskite. Furthermore, the measured infrared and Raman spectra show the vibrational modes of UO2 2+ and SiO4 4- ions, particularly within the 700~1,100 cm-1 region, which support that the synthetic mineral has a characteristic layered uranyl-silicate structure of crystalline sklodowskite. Finally, we utilized synthetic minerals to estimate its solubility up to about three months in a model groundwater, where the dissolved species composition is analogous to that of granitic groundwater from the KAERI Underground Research Tunnel. In this presentation, we will present in detail the results of spectroscopic characterizations and the methodology employed to assess the solubility of the U(VI)-silicate solid phase.
197.
2023.11 구독 인증기관·개인회원 무료
In environments where buffer materials are exposed to increased temperature due to the decay heat emitted by radioactive waste, it is crucial to assess the performance of the buffer material in relation to temperature effects. In this study, we conducted experiments using Bentonil-WRK, a calcium-type bentonite, compacted to a dry density of 1.65 g/cm3 and an initial water content of 15%. The experimental temperature conditions were set to 30, 60, 90, 110, and 130°C. We observed that the swelling pressure of the compacted bentonite buffer decreased as the temperature increased. The findings from this study can provide valuable guidance for the design of high-level waste repository in Korea.
198.
2023.11 구독 인증기관·개인회원 무료
The operation time of a disposal repository is generally more than one hundred years except for the institutional control phase. The structural integrity of a repository can be regarded as one of the most important research issues from the perspective of a long-term performance assessment, which is closely related to the public acceptance with regard to the nuclear safety. The objective of this study is to suggest the methodology for quantitative evaluation of structural integrity in a nuclear waste repository based on the adaptive artificial intelligence (AI), fractal theory, and acoustic emission (AE) monitoring. Here, adaptive AI means that the advanced AI model trained additionally based on the expert’s decision, engineering & field scale tests, numerical studies etc. in addition to the lab. test. In the process of a methodology development, AE source location, wave attenuation, the maximum AE energy and crack type classification were subsequently studied from the various lab. tests and Mazars damage model. The developed methodology for structural integrity was also applied to engineering scale concrete block (1.3 m × 1.3 m × 1.3 m) by artificial crack generation using a plate jacking method (up to 30 MPa) in KURT (KAERI Underground Research Tunnel). The concrete recipe used in engineering scale test was same as that of Gyeongju low & intermediate level waste repository. From this study, the reliability for AE crack source location, crack type classification, and damage assessment increased and all the processes for the technology development were verified from the Korea Testing Laboratory (KTL) in 2022.
199.
2023.11 구독 인증기관·개인회원 무료
Advanced countries in the field of nuclear research and technology are currently examining the feasibility of deep geological disposal as the most appropriate method for the permanent management of high-level radioactive waste, with no intention of future retrieval. Deep geological disposal involves the placement of such waste deep underground within a stable geological formation, ensuring its permanent isolation from the human environment. To guarantee the enduring isolation and retardation of radionuclides with half-lives spanning tens of thousands to millions of years from the broader ecosystem, it is imperative to comprehend the long-term evolution of deep disposal systems, especially the role of natural barriers. These natural barriers, typically consisting of bedrock, encase the repository and undergo long-term evolutions due to tectonic movements and climate variations. For the effective disposal of high-level radioactive waste, a thorough assessment of the site’s long-term geological stability is essential. This necessitates a comprehensive understanding of its tectonic evolution and development characteristics, including susceptibility to seismic and magmatic events like earthquakes and intrusions. Furthermore, a detailed analysis of alterations in the hydrogeological and geochemical environment resulting from tectonic movements over extended time frames is required to assess the potential for the migration of radionuclides. In this paper, we have examined international evaluation methodologies employed to elucidate the predictive long-term evolution of natural barriers within disposal systems. We have extracted relevant methods from international case studies and applied a preliminary scenario illustrating the long-term evolution of the geological environment at the KURT (KAERI Underground Research Tunnel) site. Nevertheless, unlike international instances, the scarcity of quantitative data limits the depth of our interpretation. To present a dependable scenario in the future, it is imperative to develop predictive technologies aimed at comprehensively studying the geological evolution processes in the Korean peninsula, particularly within the context of radioactive waste disposal.
200.
2023.11 구독 인증기관·개인회원 무료
Engineered Barrier Systems (EBS) are a key element of deep geological repositories (DGR) and play an important role in safely isolating radioactive materials from the ecosystem. In the environment of a DGR, gases can be generated due to several factors, including canister corrosion. If the gas production rate exceeds the diffusion rate, pore pressures may increase, potentially inducing structural deterioration that impairs the function of the buffer material. Therefore, understanding the hydraulic-mechanical behavior of EBS due to gas generation is essential for evaluating the longterm stability of DGR. This study employed X-ray computed tomography (CT) technology to observe cracks created inside the buffer material after laboratory-scale gas injection experiments. After CT scanning, we identified cracks more clearly using an image analysis method based on machine learning techniques, enabling us to examine internal crack patterns caused by gas injection. In the samples observed in this study, no cracks were observed penetrating the entire buffer block, and it was confirmed that most cracks were created through the radial surface of the block. This is similar to the results observed in the LASGIT field experiment in which the paths of the gas migration were observed through the interface between the container and the buffer material. This study confirmed the applicability of high-resolution X-ray CT imaging and image analysis techniques for qualitative analysis of internal crack patterns and cracks generated by gas breakthrough phenomena. This is expected to be used as basic data and crack analysis techniques in future research to understand gas migration in the buffer material.