Many countries have used nuclear power to generate electricity. Uranium-235, which is used as fuel in nuclear power plants, produces many fission products. Among them, iodine-129 is problematic due to its long half-life (1.57×107 years) and high diffusivity in the environment. If it is released into the environment without any treatment, it could have a major impact on humans and ecosystems. Therefore, it must be treated into a stable form through capture and solidification. Iodine can be captured in the form of AgI through silver-loaded zeolite filters in off-gas treatment processes. However, AgI could be decomposed in the reducing atmosphere of groundwater, so it must be converted into a stable form. In this study, Al2O3, Bi2O3, PbO, V2O5, MoO3, or WO3 were added to the iodine solidification matrix, AgI-Ag2O-TeO2 glass. The glass precursors were mixed to the appropriate composition and placed in an alumina crucible. After heat treatment at 800°C for 1 hour, the melt was quenched in a carbon crucible. The leaching behavior and thermal properties of the glass samples were evaluated. The PCT-A test for leaching evaluation showed that the normalized releases of all elements were below 2 g/m2, which satisfied the U.S. glass wasteform leaching regulations. Diffrential scanning calorimetry (DSC) was performed to evaluate the thermal properties of all glass samples. The addition of MoO3 or WO3 to the AgI-Ag2O-TeO2 glass increased the glass transition temperature (Tg) and crystallization temperature (Tc) while maintaining the glass stability. The similar relative electro-static filed values of MoO3, and WO3 which are approxibately three times that of the glass network former TeO2, could provide sufficient force to the TeO2 interacting with the non-bridging oxygen forming Te-O-M (M=V, Mo, W) links. The high electrostatic forces of Mo and W increased the glass network cohension and prevented the crystallization of the glass.
The design of a radioactive waste disposal system should include both natural and engineered barriers to prevent radionuclide leakage and groundwater contamination. Colloids and gases can accelerate the movement of radionuclides and affect their behavior. It is important to consider these factors in the long-term stability evaluation of a deep geological repository. An experimental setup was designed to observe the acceleration of nuclide behavior caused by gas-mediated transport in a simulated high temperature and pressure environment, similar to a deep disposal repository. The study used specimens to simulate gas flow in engineered barriers, based on conditions 1000 years after repository closure. In the experiment, bentonite WRK with a dry density of 1.61 g/cm3 was used after compaction. Measurements were taken of the saturation time and gas permeability of compacted bentonite. In this study, gas was injected into saturated buffer materials at various pressures to evaluate the penetration phenomenon of the buffer material according to the gas pressure. It was observed that gas penetrated the buffer material and moved upward in the form of gas bubbles at a specific pressure. Furthermore, when a flow was continuously induced to penetrate the buffer material, erosion occurred, and the eroded particles were found to be able to float upward or be transported by gas bubbles. In future studies, analysis will be conducted on the transport rate of fine particles according to the size of gas bubbles and the characteristics of the nuclides adsorbed on the fine particles.
To obtain a license for a deep geological disposal repository for spent nuclear fuel, it is necessary to perform a safety assessment that quantifies the radiological impact on the environment and humans. One of the key steps in the safety assessment of a deep geological repository is the development of scenarios that describe how the repository evolves over the performance period and how events and processes affect performance. In the field of scenario development, demonstrating comprehensiveness is critical, which describes whether all factors that are expected to have a significant impact on the repository's performance have been considered. Mathematical proof of this is impossible. However, If the scenario development process is logical and systematic, it can support the claim that the scenario is comprehensive. Three primary approaches are being considered for scenario development: ‘Bottomup’, ‘Top-down’, and ‘Hybrid’. Hybrid approach provides a more systematic and structured process by considering both the FEPs (Features, Events, Processes) and safety functions utilized in the bottomup and top-down approaches. Many countries that develop recent scenarios prefer demonstrating scenario comprehensiveness using a hybrid approach. In this study, a systematic and structured scenario development process of a hybrid approach was formulated. Based on this, sub-scenarios were extracted that describe the phenomena occurring in the repository over the performance period, categorized by period. By integrating and screening the extracted sub-scenarios, a scenario describing the phenomena occurring over the entire period of disposal was developed.
The deep geologic repository (DGR) concept is widely accepted as the most feasible option for the final disposal of spent nuclear fuels. In this concept, a series of engineered and natural barrier systems are combined to safely store spent nuclear fuel and to isolate it from the biosphere for a practically indefinite period of time. Due to the extremely long lifetime of the DGR, the performance of the DGR replies especially on the natural geologic barriers. Assessing the safety of the DGR is thus required to evaluate the impacts of a wide range of geological, hydrogeological, and physicochemical processes including rare geological events as well as present water cycles and deep groundwater flow systems. Due to the time scale and the complexity of the physicochemical processes and geologic media involved, the numerical models used for safety evaluation need to be comprehensive, robust, and efficient. This study describes the development of an accessible, transparent, and extensible integrated hydrologic models (IHM) which can be approved with confidence by the regulators as well as scientific community and thus suitable for current and future safety assessment of the DGR systems. The IHM under development can currently simulate overland flow, groundwater flow, near surface evapotranspiration in a modular manner. The IHM can also be considered as a framework as it can easily accommodate additional processes and requirements for the future as it is necessary. The IHM is capable of handling the atmospheric, land surface, and subsurface processes for simultaneously analyzing the regional groundwater driving force and deep subsurface flow, and repository scale safety features, providing an ultimate basis for seamless safety assessment in the DGR program. The applicability of the IHM to the DGR safety assessment is demonstrated using illustrative examples.
The distribution characteristics of rock fractures determine the hydro-mechanical behavior of natural barriers. Rock fractures are defined by various parameters, which are analyzed as the probability distribution from observation results by surveying the exposed rock surface or borehole. The size is known to have the most uncertainty among the fracture parameters because it cannot be directly measured. Therefore, various estimation methods have been proposed for fracture size distribution using the fracture traces observable on the rock surface. However, most methods are based on a planar survey area, limiting their applicability to the underground research laboratory (URL) excavated in the form of tunnels. This study aims to review a method that can be applied to estimate the size distribution of fractures in deep rock masses at the URL site. The estimation method using the joint center volume (JCV) has recently been extended to be applicable regardless of the geometry of the survey area, which means that it can be applied to the URL site with complex structures. To apply the JCV-based estimation method to non-planar survey areas, JCV calculation using Monte Carlo simulation and estimation of fracture size distribution using the maximum likelihood method are required. In this study, we applied the JCV-based estimation method to a tunnel-shaped survey area to examine its applicability to the URL site. The error rates were analyzed when there were fracture sets with various orientations, size distributions, and maximum fracture sizes in the rock mass, and it was found to be less than 10% in all cases. This result indicates that the JCV-based estimation method can be used to estimate the fracture size distribution of the surrounding rock mass if accompanied by a reliable survey of fracture traces on the tunnel surface inside the URL site. Also, since there are no restrictions on the geometry of the survey area, we can continuously update the estimation results during the URL excavation process to increase reliability. The fracture size distribution is essential for constructing the discrete fracture network (DFN) model of the rock mass units at the URL site. In the future, the uncertainty for the fracture size in the DFN model is expected to be reduced by applying the JCV-based estimation method.
The acoustic emission (AE) method as a passive non-destructive monitoring technique is proposed for real-time monitoring of mechanical degradation in underground structures, such as deep geological disposal of high-level nuclear waste (HLW). This study investigates the low-frequency characteristics of AE signals emitted during the fracturing of meter-scale concrete specimens; uniaxial compression tests (UCT) in a lab scale and Goodman jack (GJ) tests in a 1.3 m-long concrete block were conducted while acquiring the AE signals using low-frequency AE sensors. The results indicate a sharp increase in AE energy emission at approximately 60% and 80% of the yield stresses in the UCT and GJ tests, respectively. The collected AE signals were primarily found in two frequency bands: the 4-28 kHz range and the 56-80 kHz range. High-frequency AE signals were captured more as the stress increased in the GJ tests, which was in contrast to the UCT tests. Furthermore, the AE signals obtained from the Goodman jack tests tended to lower RA values than the UCT results. This study presents unique experimental data with low-frequency AE sensors under different loading conditions, which provides insights into field-scale AE monitoring practices.
In order to reduce the area of the high-level radioactive waste (HLW) repository, a buffer material with high thermal conductivity is required. This is because if the thermal conductivity of the buffer material is high, the distance between the disposal tunnels and the deposition holes can be reduced. Sand, which is a natural material and has higher thermal conductivity than bentonite, is added to bentonite to develop an enhanced buffer material. For the sand-bentonite mixture, it is important which sand to use and how much to add because an enhanced buffer material should satisfy both hydraulic (H) and mechanical (M) performance criteria while improving thermal conductivity (T). In this study, we would like to show what type of sand and how much sand should be added to develop an enhanced buffer material by adding sand to Gyeongju bentonite, a representative bentonite in Korea. For this purpose, the thermal conductivity, hydraulic conductivity, and swelling pressure of the sand-Gyeongju bentonite mixture according to the sand addition rate were measured. It is more efficient to use silica sand with smaller particles than Jumunjin sand which is a representative sand in Korea as an additive for an enhanced buffer material than using the Jumunjin sand. In order for the sand-Gyeongju bentonite buffer material to satisfy both the hydraulic and mechanical performance criteria as a buffer material while increasing the thermal conductivity, it is judged that the optimum dry density is 1.7 g/cm3 at least and the optimum sand addition rate is 10% at most.
As Korea has relatively small land area and large population density compared to other countries considering the DGD concept such as Finland and Sweden, improvements of disposal efficiency in the viewpoint of the disposal area might be needed for the current disposal system to alleviate the difficulties of site selection for the HLW repository. In this research, we conduct a numerical investigation of the disposal efficiency enhancement for a high-level radioactive waste (HLW) repository through three design factors: decay heat optimization, increased thermal limit of buffer, and double-layer concept. In the optimized decay heat model, seven SNFs with the maximum and minimum decay heat depending on actual burn-up and cooling time are iteratively combined in a canister. Thermal limit of buffer is assumed as 100°C and 130°C for reference and high-efficiency repository concepts, respectively. By implementing an optimized decay heat model and a single-layer concept with a thermal limit of buffer set at 100°C, the disposal efficiency increases to 2.3 times of the improved Korean Reference disposal System (KRS+). Additionally, incorporating either an increased thermal limit of buffer to 130°C or a double-layer concept leads to a further 50% improvement in disposal efficiency. By integrating all three design factors, the disposal efficiency can be enhanced up to five times that of the KRS+ repository. Our analysis of rock mass stability reveals that increasing the thermal limit of buffer can generate rock spalling failure in a wider area. However, when accounting for the effect of confining stress by swelling of buffer and backfill using the Mohr-Coulomb failure criteria, the rock mass failure only occurred at the corner between the disposal tunnel and deposition hole when the thermal limit of buffer was increased and a single-layer concept was applied. The results given in this study can provide various options for designing the high-efficiency repository in accordance with the target disposal area and quality of the rock mass in the potential repository site.
A disposal research program for HLW has been carried out since 1997 with the aim of establishing the preliminary concept of geological disposal in Korea. The preliminary studies were conducted by conducting manufacture and installation of an in-situ nuclide migration system in KAERI Underground Research Tunnel (KURT). Nuclides could be released from a deep underground disposal facility due to thermal and physicochemical changes into the surrounding environments. Understanding on the migration and retardation processes of nuclides in a fractured rock is very important in the safety assessment for the radioactive waste disposal. In this study, we evaluated fracture filling minerals and aperture distribution (3D map) along the fracture surfaces under the controlled conditions. The fractured granite block which has a single natural fracture of 1 m scale was sampled in a domestic quarry (Iksan), which groundwater had been flowed through. This rock has an interconnected porosity of 0.36 with the specific gravity of 2.57. The experimental set-up with the granite block with dimensions of 100×60×60 (cm). A flow of de-ionized water through the fracture between pairs of boreholes was initiated and the pressure required to maintain a steady flow was measured. In additions, fracture filling minerals were sampled and examined by mineralogical and chemical analyses. There are phyllosilicate minerals such as illite, kaolinite, and chlorite including calcite, which are fracture filling minerals. The illite and kaolinite usually coexist in the fracture, where their content ratio is different according to which mineral is predominant. For the evaluation of fracture, surface was divided into an imaginary matrix of 20×20 sub-squares as schematically. The calculated results are expressed as a two dimensional contour and a three dimensional surface plot for the aperture distribution in the fracture. The aperture value is distributed between 0.075 and 0.114 mm and the mean aperture value is 0.095 mm. The fracture volume is about 55 ml. Also the 137Cs sorption (batch test) distribution coefficients increased to Kd = 800~860 mL/g in the fractured rock because of the presence of secondary minerals formed by weathering processes, compared to the bedrock (Kd = 750~830 mL/g). These results will be very useful for the evaluation of environmental factor affecting the nuclides migration and retardation.
Mixed-bed ion exchange resin consist of anion exchange resin and cation exchange resin is used to treat liquid radioactive waste in nuclear power plants. C-14 from heavy water reactors (HWR) is adsorbed on the anion exchange resin and is considered intermediate-level radioactive waste. The total amount of radioactivity of C-14 in spent ion exchange resin exceeds the activity limits for the disposal facility. Therefore, it is necessary to reduce the radioactivity through pre-treatment. There are thermal and non-thermal methods for the treatment of spent ion exchange resin. However, destructive methods have the problem of emitting off-gas containing radionuclides. To solve this challenge, various methods have been developed such as acid stripping, PLO process, activity stripping, thermal treatment and others. In this study, spent ion exchange resin (spent resin) was treated using microwave. The reaction characteristics of the resin to microwave were used to selectively remove the C-14 on the functional groups. Simulated spent anion exchange resin and spent resin from Wolseong NPP were treated with the microwave method, and the desorption rate was over 95%. An integrated process system of 1 kg/batch was built to produce operating data. After the operation of the process, characterization and evaluation of post-treatment for condensate water and adsorbent used in the process were performed. When the process system was applied to treat simulated spent resin and real spent resin, both showed a desorption rated of more than 97%. It means that the C-14 was successfully removed from the radioactive spent resin.
Since the first operation of the Gori No. 1 nuclear power plant in Korea was started to operate in 1978, currently 24 nuclear power plants have been being operated, out of which 21 plants are PWR types and the rest are CANDU types. About 30% of total electricity consumed in Korea is from all these nuclear power plants. The accumulated spent nuclear fuels (SNFs) generated from each site are temporarily being stored as wet or dry storage type at each plant site. These SNFs with their high radiotoxicity, heat generating, and long-lived radioactivity are currently the only type of high-level radioactive waste (HLW) in Korea, which urgently requires to be disposed of in deep geological repository. Studies on disposal of HLW in various kind of geological repositories have been carried out in such countries as Sweden, Finland, United States, and etc. with their own management policies in consideration of their situations. In Korea long-term R&D research program for safe management of SNF has also been conducted during last couple of decades since around 1997, during which several various type of disposal concepts for disposal of SNFs in deep geological formations have been investigated and developed. The first concept developed was KAERI Reference Disposal System (KRS) which is actually very much similar to Swedish KBS-3, a famous concept of direct disposal of SNF in stable crystalline rock at a depth of around 500 m which has been regarded as one of the most plausible method worldwide to direct disposal of SNF. The world first Finnish repository will be also this type. Since the characteristics of SNF discharged from domestic nuclear reactors have been changed and improved, and burnup has sometimes increased, a more advanced deep geological repository system has been needed, KRS-HB (KRS with High Burnup SNF) has been developed and in consideration of the dimensions of SNFs and the cooling period at the time point of the disposal time, KRS+, a rather improved disposal concept has also been subsequently developed which is especially focused on the efficient disposal area. Recently research has concentrated on rather advanced disposal technology focused on a safer and more economical repository system in recent view of the rapidly growing amount of accumulated SNF. Especially in Korea the rock mass and the footprint area for the repository extremely limited for disposal site. Some preliminary studies to achieve rather higher efficiency repository concept for disposal of SNF recently have already been emphasized. Among many possible ones for consideration of design for high-efficiency repository system, a double-layered system has been focused which is expected to maximize disposal capacity within the minimum footprint disposal area. Based on such disposal strategy a rather newly designed performance assessment methodology might be required to show long-term safety of the repository. Through the study some prerequisites for such methodological development will be roughly checked and investigated, which covers FEP identification and pathway and scenario analyses as well as preliminary conceptual modeling for the nuclide release and transport in near-field, far-field, and even biosphere in and around the conceptual repository system.
It is expected that around 576,000 bundles of CANDU spent nuclear fuels (SNF) will be generated from the four CANDU reactors located at the Wolsong site. The authors designed and proposed a reference disposal concept based on the KBS-3 type and KURT geological data in 2022. In addition, we have reviewed the literatures and selected four alternative disposal methods to develop the higherefficiency disposal concept than the reference concept since 2021. As known well, the most important safety functions of the geological disposal are containment and isolation, and the secondary function is retardation. A disposal canister covers the former, and buffer may do the latter. In this study, we design the engineered barrier systems for the four alternative concepts: (1) mined deep borehole matrix, (2) sub-seabed disposal, (3) deep borehole disposal, and (4) multi-level dispoal. Assuming total 10,000 tU of CANDU SNF, four different kinds of unit disposal module consisting of disposal canisters and compacted bentonite buffers are designed based on the technique currently available. Two alternative concepts, sub-seabed disposal and multi-level disposal, share the same unit module design with the reference concept in 2022. For all the alternative concepts, we assume that the density of the compacted buffer is 1.6 g/cm3. For the mined deep borehole matrix disposal, we introduce a disposal canister slightly modified from the Canadian NWMO canister with a capacity of 48 bundles. The thickness of a copper layer is changed to be 10 mm considering the long-term corrosion resistance. The buffer thickness around a disposal canister is 20 cm, and the diameter of a borehole is 100 cm. Two different kinds of buffer blocks are proposed for the easy handling of them. For the deep borehole disposal, a SiC-stainless steel canister is designed, and 63 bundles of CANDU SNF is emplaced in the canister. We expect that the SiC ceramic canister shows very excellent corrosion resistance and has a high thermal conductivity under the geological conditions. The deep borehole will be plugged with four layered sealing materials consisting of granite blocks, compacted bentonite, SiC ceramic, and concrete plugs.
In order to use nuclear energy stably, high level radioactive waste including spent nuclear fuel that is inevitably discharged from nuclear power plants after electricity generation must be managed safely and isolated from the human living area for a long period of time. In consideration of the accumulated amount of spent nuclear fuel anticipated according to the national policy for HLW management, the area required for the deep geological repository facility is expected to be very large. Therefore, it is essential to conduct various studies to optimize the area required for the disposal of spent nuclear fuel in cases where the nationally available land is extremely limited, such as in Korea. In this study, as part of such research, the strategies and the requirements for the preliminary design of a high efficiency repository concept of spent nuclear fuel were established. For PWR spent nuclear fuel, seven assemblies of spent nuclear fuel can be accommodated in a disposal canister, and high burnup of spent nuclear fuel was taken into consideration, and the source terms such as the amount and time of discharge and disposal were based on the 2nd national basic plan. By evaluating the characteristics, the amount of decay heat that can be accommodated in the disposal canister was optimized through the combination of seven assemblies of spent nuclear fuel. The cooling period of the radiation source for the safety assessment of the repository system was set at 55 years, and the operation of the repository would start from 2070 and then the disposal schedule would be conducted according to the disposal scenario based on the national basic plan. With these disposal strategies described above, the main requirements for setting up the conceptual design of the high efficiency repository system to be carried out in this study were described below. • A combination of seven spent nuclear fuels with high heat and spent nuclear fuels with low heat was loaded into a disposal canister, and the thermal limit per disposal canister was 1,600 W. • In order to maintain the long-term performance of the repository, the maximum temperature design limit in the buffer material was set to 130°C. • In the deep disposal environment, the safety factor [yield strength/maximum stress] required to maintain the structural stability of the disposal canister should be maintained at 2.0 or higher so that integrity of the canister can be maintained even under long-term hydrostatic pressure and buffer swelling pressure in the deep disposal environment. • The repository should have a maximum exposure dose of 10 mSv/yr or less, which is the legal limit in case of a single event such as an earthquake, and the risk level considering natural phenomena and human intrusion, which is less than the legal limit of 10-6/yr. These strategies and requirements can be used to develop the high-efficiency geological disposal concept for spent nuclear fuels as an alternative disposal concept.
Th(IV) is a stable actinide that can act as a chemical analogue of U(IV) and Pu(IV), which are important radionuclides in safety assessments of deep geological repositories (DGR). Therefore, to understand the geochemical behaviour of U(IV) and Pu(IV), batch sorption of Th(IV) onto crystalline rocks were performed in oxidising conditions. The distribution coefficients (Kd) of Th(IV) were of particular interest. Gyeongju fresh groundwater (GF) and Gyeongju brackish groundwater (GB) were obtained at the Gyeongju Low and Intermediate Level Radioactive Waste (LILW) Disposal Facility. Crystalline granite (gr) and biotite gneiss (bg) were collected in Gyeongju and Gwacheon respectively and were grounded to a particle size smaller than 150 μm. Sorption samples were continuously shaken for 7 days under 200 rpm at 25°C. The liquid-to-solid ratio (V/m) was 200 L·kg-1. Th(IV) concentrations of the sorption samples were determined by UV-Vis-NIR absorption colorimetry from the formation of Th(IV)-arsenazo III complexes. Although the method allowed the initial Th(IV) concentrations to be determined, the final Th(IV) concentrations fell below the limit of detection (LOD), 6.27×10-9 mol·L-1. Taking the LOD as the final concentrations, conservative Kd were calculated to be 4,410 L·kg-1 for GF-gr and GF-bg, and 7,830 L·kg-1 for GB-gr and GB-bg. The result indicates a strong sorption affinity of Th(IV) onto granite and biotite gneiss within Gyeongju groundwater, suggesting a similar behaviour for U(IV) and Pu(IV). Furthermore, comparison of the conservative Kd obtained from the experiment were compared with existing Kd values of Th(IV). Such analysis and comparison of Th(IV) Kd in various types of groundwater could help locate the optimal site for a DGR in South Korea.
IAEA safety standards document and international programs (such as BIOMASS) related to the assessment of the biosphere around High Level Radioactive Waste (including Spent Nuclear Fuel) repositories require the assessment of the biosphere to use the assumption that the current natural environment and human society will be maintained, and at the same time, the evolution of the distant future changes also need to be taken into account. In Korea, which has not designated candidate disposal sites, it is necessary to investigate and predict the current state and future changes of the natural environment throughout Korea and apply it practically to Biosphere assessment (for BDCF derivation) for candidate disposal sites suitability assessment and Safety Case (for performance assessment) preparation for design, construction, operation, and post-closure management. To this end, the natural environment in the fields of Topography, Geology, Soil, Ecology, Weather and Climate, Animals and Plants, Hydrology, Ocean, Land-use, etc. and human society in the fields of Population Distribution, Spatial-Planning, Urban Form, Industrial-Structure, Lifestyle etc. are being investigated in the context of current status, past change records, and future change potential in the Korean Peninsula. This paper summarizes those investigations to date. This study referred Biomass-6 [IAEA] and National Atlas I (2019)/II (2020)/III (2021) [National Geographic Information Institute of the Korea Ministry of Land, Infrastructure and Transport].
Bentonite has been considered as a potential buffer material in the engineering barriers of highlevel radioactive waste disposal systems. The intrusion of groundwater and heat from the waste change the temperature of the bentonite, which can alter the hydraulic properties of the bentonite. In this study, temperature effects on permeability were observed in two Ca-type bentonites. Laboratory tests were conducted on two types of block that were compacted using Korean Gyeongju bentonite and bentonil-WRK at different dry densities. Permeability tests were conducted at three different temperatures, namely 30°C, 60°C, and 90°C, using deionized water. Moreover, comparison between two Ca-type bentonites is carried out.
Two sets of analyses for the cases of groundwater release to well and sea ecosystems were conducted for the environmental impact assessment of high-level radioactive waste disposal facilities. After obtaining the respective BDCF (Biosphere Dose Conversion Factor) results for the scenarios of well-farming and marine water fishing using different biosphere assessment conceptual models implemented in ECOLEGO, they were compared each other. The purposes of these analyses are to identify reference generic biosphere conceptual models and to get insight on model uncertainty. In this study, the endpoint used for the comparison of the ECOLEGO biosphere models was the socalled Biosphere Dose Conversion Factor (BDCF), which is defined as the maximum value of the total dose to the exposed group, in Sv/yr, resulting from a continuous unit release of 1 Bq/yr during the whole simulation time either to the well compartment (BDCF_Well) or to the marine water compartment (BDCF_Sea). The radionuclides considered in the comparison were Cs-137, I-129, Nb-94, Ni-59, Ni- 63, Sr-90 and Tc-99. The conceptual models used in the biosphere assessment of the releases to a well are based on models that have been used by the DOE (simple-soil model) and SKB (complex-soil model) in safety assessments of radioactive waste repositories, respectively. Difference between two conceptual models used in the assessment of the releases to a sea is the number of compartments representing the sea; i.e., one model represents the sea with one compartment for the water and one for the sediment (singlecompartment model), whereas the alternative model uses two compartments for the water and the sediments: one for the inner coast and one for the outer coast (double-compartment model). The results of the BDCF_Well to a farmer obtained with the DOE and SKB models are shown to be very close to each other. Despite the differences in conceptual models and parameters, the results are within a maximum difference of a factor of 4. The results from the SKB model were higher for all radionuclides. The values of the BDCF_Sea obtained with the single- and double-compartment models are shown to be larger differences with a maximum order of 2. For all studied radionuclides, the double-compartment model produces higher BDCFs than does the single-compartment model. The differences would be due to activity concentrations in both water and sediments. Since the hydrodynamic behavior assumed for flow in the sea could significantly influence the dilution volumes and hence the concentrations, it is found that site-specific investigations are necessary to establish an appropriate marine biosphere conceptual model.
The purpose of this study was to examine whether galvanic corrosion of copper occurs by inserting a third barrier layer with a higher corrosion potential than copper between copper and cast iron when the copper layer is locally perforated by pitting or partial corrosion. A triple layer composed of copper, inserted metal, and carbon steel was manufactured by cold spray coating of inserting metal powders such as Ag, Ni, and Ti on carbon steel plate followed by Cu coating on it. First, the corrosion properties were evaluated electrochemically for each metal coating. As a result of Tafel plot anaylsis in KURT groundwater condition, the corrosion potential of Fe (-567 mV) was much lower than that of Cu (-91 mV), and the corrosion potential of Ni (-150 mV) was also lower than that of Cu. Therefore, Ni was likely to corrode before Cu. However, the corrosion current of Ni was lower than that of the Cu. In the galvanic specimen where the copper and inserting metal were exposed together, Cu-Fe was much lower corrosion potential of -446 mV, and the corrosion potential of Cu-Ti, Cu-Ni, and Cu-Ag were slightly higher than that of Cu. Therefore, it seemed that Ag, Ni, and Ti all might promote galvanic corrosion of surrounding copper when the copper layer was perforated to the inserted metal layer. If the metal insertion presented in this study operates properly, the disposal container does not need to worry about the partial corrosion or non-uniform corrosion of external copper layer.
In KAERI, a site descriptive model for stress field estimation had already been constructed by using integrated field data within KURT site scale. A sub-divided rock block domain containing major fracture zones has spatial rock mass and fault properties. The properties were decided based on the rock classification results of several borehole investigations. Modeling for maximum and minimum horizontal stress field estimation was performed and compared with the in-situ data. As a result, a depth-dependent stress ratio was adopted to obtain numerical results closer to actual in-situ data. Although the results were suitable at a relatively low depth (~500 m), there is still some deviation trend at a deep depth. This study aims to improve these modeling results by incorporating not only depth-dependent stress ratio but also changes in rock mass properties along the depth. The deep borehole of DB2 in the KURT site indicated fracture distribution corresponding to the property changes. Natural fractures are typically randomly oriented, and the fracture frequency decreases with increasing depth. The increase in P-wave velocity log data accompanies these features. A discrete fracture network (DFN) model can be used to simulate fractured rock explicitly, but DFN modeling is not feasible for site scale analysis because of its numerical efficiency. Therefore, as a preliminary model in this study, the effect of fracture distribution was considered by substituting the influence for the depth-dependent property. The properties were estimated from the fracture frequency and P-wave velocity log data. The influence of elastic modulus and density on the site stress field was dominant, with decreasing the deviation trend between modeling and in-situ data at a deep depth. Considering that the depth of the repository construction is within about 500 m, it may not be necessary to consider the change of rock properties with depth. However, it was determined that the rock property effect might need to be considered when the loading conditions change due to subsidence in the long-term evolution scenario. Continuously, this site descriptive modeling will be interdependently conducted with a representative DFN block model for deriving equivalent properties in fractured rock.
Currently, there are 25 nuclear power plants (NPPs) in operation in Korea, including 22 pressurized water reactors (PWRs) and three pressurized heavy water reactors (PHWRs). Two NPPs, including Kori Unit 1 and Wolsong Unit 1, are permanently shut down and awaiting decommissioning. If Kori Unit 2, which is expected to be permanently shut down soon, is included, the number of decommissioning NPPs will be increased to three. Spent fuels (SFs) are continuously generated during the NPP operation, which are stored in an SF storage pool in NPPs to cool down the decay heat emitted from SFs. For safe NPP operation, SFs must be regarded as waste, and a disposal site must be selected to isolate SFs. However, an appropriate site has yet to be selected in Korea. SFs contain long-lived nuclides with a high specific activity. For disposal, it is important to characterize the nuclides in the fuels and delay the migration of the nuclides to the environment when SFs are placed in a future disposal facility. If the disposal container is broken, the nuclides in the fuels escape from the filling material, such as bentonite. These escaped nuclides are dissolved in groundwater and migrate to the surface of the earth. Thus, it is possible to assess the radiological impact, such as the exposure dose during and after the disposal, if the types and characteristics of nuclides in SFs are known. This study investigated the nuclides in SFs and identified exposure scenarios that may occur in the disposal process of SFs and migration characteristics when the nuclides leak into groundwater to propose a dose assessment methodology for workers and the public.