This article aims to compile key information to describe the current production situation of potatoes f or c onsumption and v irus- free s eed potatoes i n Paraguay, and to identify the main challenges for developing a self-sufficient production system. The study describes the climatic conditions of the production of potatoes and the national production and distribution situation, highlighting the dependence on imports for more than 90% of market demand. It analyzed the issues surrounding the production and supply of virus-free seed potatoes, which depend on imports from Argentina, averaging 799.9 tons per year. Additionally, this study collects information on virus detection in local potatoes and the risks associated with introducing viruses through imported seeds. To address these issues, the Korea Partnership for Innovation of Agriculture (KOPIA) and the Paraguayan Institute of Agricultural Technology (IPTA) cooperation project promoted the production of virus-free seed potatoes for their distribution to smallholder farmers across various country regions, strengthening the foundations for future virus-free seed potato production and distribution systems. Improving self-sufficiency in potato production in Paraguay requires an integrated strategy that includes analyzing suitable regions for seed potato production, implementing advanced technologies, and strengthening farmers’ technical capacity. Establishing virus-free seed potato production areas and securing governmental and legal support are crucial steps toward achieving sustainable seed potato production and reducing dependence on imports.
꼬마꽃벌과의 2종, Lasioglossum (Ctenonomia) kumejimense (Matsumura and Uchida, 1926) and Lasioglossum (Pyghalictus) politum pekingense Blüthgen, 1925이 한국에서 처음 확인되었다. 이 종의 암컷의 진단 특징과 분포, 형태적 형질 도해, 한국산 줄꼬마꽃벌속의 아속에 대한 분류키를 수록한다.
Forage crop cultivation and management are the greatest challenge under warm and dry climatic conditions. In this study, we estimated the productivity of three Sorghum-Sudangrass hybrids (SSH) cultivars in Cheonan, Korea, under different weather conditions during 2021-2023. The selected three cultivars performed well in the first and second cutting time during the experimental period and the plant growth characteristics were slightly different among cultivars. Particularly, the plant height was highest in Superdan cultivars (282 ± 24, 271 ± 30 cm), followed by Dairy mens dream (263 ± 39, 283 ± 29 cm) and Supergreen (270 ± 36, 264 ± 34 cm), for the first and second cuts respectively. The stem diameter slightly decreased in the second cut compared with the first cut of SSH cultivars. The highest stem diameter was found in Superdan cultivars (11.1 ± 1.7 mm), greater than Supergreen (10.2 ± 1.7 mm), and Dairy mens dream (9.5 ± 1.8 mm). Also, the total dry matter yield (DMY) was highest in Dairy mens dream (28,868 ± 6,653 kg/ha) followed by Supergreen and Superdan cultivars. In 2021 and 2023, the highest plant height, stem diameter and DMY were measured in the selected cultivars compared to 2022. The crude protein level was higher in the first cutting of all three cultivars at approximately 9-12%, in the order of Supergreen > Dairy mens dream > Superdan varieties. Moreover, the crude protein content was lowest in the second harvest of all cultivars, but the NDF and ADF levels did not alter in both harvest periods across different cultivars and years. In conclusion, the selected cultivars for SSH forage production could be efficient and recommended in the Cheonan region. However, the choice of cutting time and optimum precipitation should be considered to further increase SSH forage cultivation.
Moringa oleifera, a versatile plant, has been traditionally used to treat various ailments and is gaining scientific attention due to its potential as a medicine. Native to the Indian subcontinent, it is widely grown in tropical and subtropical regions, thriving in Asia, Africa, and South America, especially in arid climates. This study explores the antioxidant potential of Moringa oleifera leaf extract (MOLE), employing a comprehensive screening approach with various solvents to identify the most effective extraction method. Initial experiments assessed antioxidant efficacy and yield using distilled water (D.W.), 95% ethanol, and 95% methanol. Among these, 95% ethanol extract demonstrated superior antioxidant activity, confirmed through assays such as 2,2-diphenyl-1-14 picrylhydrazyl (DPPH) radical scavenging assay, total polyphenol content analysis, and reducing power assay. In addition, with the 95% ethanol MOLE, a higher extraction efficiency was yielded compared to other solvents, making it the most effective for large-scale preparation. HPLC analysis revealed the presence of key bioactive compounds, including ellagic acid, rutin, Q-3-O, quercetin, and kaempferol. Results revealed that MOLE, prepared using 95% ethanol, exhibited remarkable antioxidant properties, attributed to its rich polyphenolic content. This research underscores the therapeutic potential of MOLE as a natural antioxidant source and highlights the importance of solvent optimization in phytochemical extractions.
Background: Pluripotent stem cells (PSCs) are capable of differencing into various cell types in the body, providing them valuable for therapy of degenerative diseases. Patientspecific treatments using PSCs, such as mesenchymal stem cells in patient’s own body, may reduce the risk of immune rejection. Inducing the differentiation of PSCs into vascular endothelial cells (ECs) altering culture conditions or using specific growth factors is able to applied to the treatment of vascular diseases. The purpose of this study was to induce the differentiation of porcine epiblast stem cells (pEpiSCs), bone marrow-derived mesenchymal stem cells (pBM-MSCs) and adipose-derived mesenchymal stem cells (pAMSCs) into ECs and then examine the functionality of vascular ECs. Methods: Porcine pEpiSCs, pBM-MSCs and pA-MSCs were induced to differentiate into ECs on matrigel-coated plates in differentiation medium (EBM-2 + 50 ng/mL of VEGF) for 8 days. Cells differentiated from these stem cells were isolated using CD-31 positive (+) magnetic-activated cell sorting (MACS) and then proliferated in M199 medium. Evaluation of ECs differentiated from these stem cells was treated with capillary-like structure formation and three-dimensional spheroid sprouting assay. Results: Porcine pEpiSCs, pBM-MSCs and pA-MSCs showed similar expression of pluripotency-related genes (OCT-3/4. NANOG, SOX2). These stem cells were differentiated into vascular ECs, but showed different morphologies after the differentiation. Cells differentiated from pEpiSCs showed an elongated spindle-like morphology, whereas cells differentiated from pBM-MSCs showed a round pebble-like morphology. In the case of pA-MSCs, these two morphologies were mixed with each other. Additionally, vascular ECs differentiated from these stem cells showed different formation of capillary-like structure formation and three-dimensional spheroid sprouting assay. Conclusions: Cells differentiated from pEpiSCs, pBM-MSCs and pA-MSCs presented the functionality of different vascular ECs, demonstrating the potential of the excellent ECs differentiated from pEpiSCs.
Coffee is a major traded item worldwide. Uganda, where the coffee sector provides a livelihood to 1.8 million households, is Africa’s second-biggest coffee exporter. Pests and diseases are significant constraints affecting coffee production. Although the Ugandan government has implemented strategies to assist farmers in addressing these constraints, coffee pests and diseases continue to affect the yield and quality of coffee crops. This ongoing issue highlights the need for more effective and sustainable solutions to protect coffee production in Uganda. This review examined two prevalent diseases and two major pests known to significantly impact Uganda’s coffee systems. It explored strategies that pathogens and pests would utilize to invade and colonize coffee plants. Furthermore, this review evaluated current challenges and prospects for improving coffee pest and disease management. By offering valuable insights and recommendations, it aims to equip agricultural stakeholders with the knowledge needed to develop and implement more effective strategies for combating these persistent threats to coffee production in Uganda.
This study was conducted to investigate changes in immunoglobulin G (IgG) concentration, nutrient content, and microbial communities of fresh and heat-treated Holstein colostrum collected from a colostrum bank operated by a local agricultural technology center in Gyeongsangbuk-do, South Korea. Of the 16 colostrum samples, 8 were heated at 60℃ for 30 min under a pressure of 0.9–1 bar. The colostrum samples were stored at −70℃ until use, at which time they were thawed at 50–55℃ in a water bath to analyze IgG levels, chemical composition, and microbiome, which was identified by 16S rRNA gene sequencing using the Illumina MiSeq-PE250 platform. The IgG concentrations were similar in fresh and heat-treated colostrum. The fat, protein, and lactose contents also did not differ in these samples. However, somatic cell count (SCC) was lower in heat-treated colostrum than those in fresh colostrum (p<0.05). At the phylum level for the microbiome of fresh colostrum, Proteobacteria (44.16%) was the most abundant taxa, followed by Bacteroidota (33.26%), Firmicutes (10.04%), Actinobacteriota (7.14%), and a marginal difference in the order of abundance was observed in heat-treated colostrum. At the genus level, bacteria belonging to Sphingomonas, Delftia, Ochrobactrum, Simplicispira, and Lactobacillus were more abundant (p<0.05) in the heat-treated colostrum, while the abundance of Acinetobacter in the fresh colostrum was four times more (p<0.05) than that in the heat-treated colostrum. Our results demonstrated that heating does not affect IgG level and colostrum composition but reduces SCC (p<0.05), suggesting that heat-treated colostrum can potentially be put to further use (e.g., feeding Hanwoo calves) without compromising its quality. Differences in the microbiome between the fresh and heat-treated colostrum were limited. Further studies are required to extensively investigate the quality and safety of colostrum collected from dairy farms to ensure better utilization and processing at a local agricultural technology center.
Probiotics have been evaluated as therapeutic agents for cancer treatment in an increasing number of studies. This study investigated the inhibitory and cytotoxic effects of specific Lactobacillus strains on a human colorectal adenocarcinoma cell line (HT-29). The strains assessed were Limosilactobacillus (L.) reuteri VA 102, Ligilactobacillus (L.) animalis VA 105, and Limosilactobacillus (L.) reuteri KCTC 3594 (ATCC 23272). The viability of HT-29 cells was evaluated using the MTT assay. The findings revealed that cell-free supernatants (CFS) exhibited significant anticancer effects. Heat-inactivated L. reuteri VA 105 and L. reuteri KCTC 3594 induced a pronounced reduction in cell viability. Furthermore, live cultures of L. reuteri VA 105 and L. reuteri VA 102 also showed reduced cell viability compared to the control group. These results suggest that CFS and heat-inactivated cells may be more suitable for therapeutic applications than live bacteria owing to their improved safety profiles and reduced potential for adverse effects. Our findings also emphasize the potential anticancer benefits of these LAB strains.
This study investigates how working memory (WM) capacity and L2 linguistic knowledge affect L2 literal and inferential reading comprehension, considering the presence or absence of background knowledge. Eighty upper-intermediate to advanced adult English learners participated, completing tasks to assess WM capacity, background knowledge, L2 linguistic knowledge, and reading comprehension (both literal and inferential). Stepwise regression analyses revealed that WM capacity had a stronger influence on both literal and inferential comprehension when background knowledge was absent. For literal comprehension, L2 linguistic knowledge was the sole predictor when background knowledge was present, while WM capacity dominated in its absence. Inferential comprehension was consistently predicted by WM capacity, regardless of background knowledge. These findings indicate that WM capacity and L2 linguistic knowledge influence L2 reading comprehension differently depending on background knowledge and the type of comprehension. Implications include incorporating WM training into L2 reading instruction and employing diverse WM assessment methods to measure WM independently of L2 linguistic proficiency.
Background: Evaluating embryo quality is crucial for the success of in vitro fertilization procedures. Traditional methods, such as the Gardner grading system, rely on subjective human assessment of morphological features, leading to potential inconsistencies and errors. Artificial intelligence-powered grading systems offer a more objective and consistent approach by reducing human biases and enhancing accuracy and reliability. Methods: We evaluated the performance of five convolutional neural network architectures—EfficientNet-B0, InceptionV3, ResNet18, ResNet50, and VGG16— in grading blastocysts into five quality classes using only embryo images, without incorporating clinical or patient data. Transfer learning was applied to adapt pretrained models to our dataset, and data augmentation techniques were employed to improve model generalizability and address class imbalance. Results: EfficientNet-B0 outperformed the other architectures, achieving the highest accuracy, area under the receiver operating characteristic curve, and F1-score across all evaluation metrics. Gradient-weighted Class Activation Mapping was used to interpret the models’ decision-making processes, revealing that the most successful models predominantly focused on the inner cell mass, a critical determinant of embryo quality. Conclusions: Convolutional neural networks, particularly EfficientNet-B0, can significantly enhance the reliability and consistency of embryo grading in in vitro fertilization procedures by providing objective assessments based solely on embryo images. This approach offers a promising alternative to traditional subjective morphological evaluations.
목적 : 근시 교정용 비구면렌즈를 대상으로 중심 두께와 굴절률 및 굴절력 그리고 직경이 가장자리 두께와 무게에 어떠한 영향을 미치는지 비교하고 분석하고자 하였다. 방법 : 시중에 판매되고 있는 근시 교정용 렌즈를 굴절률(1.56~1.74)과 굴절력(-3.00~-8.00 D)별로 252개를 대상으로 선정하였다. 굴절률과 굴절력별로 40.00, 50.00 및 60.00 mm 직경 크기로 평산각 가공하여 가장자리 두께와 무게를 측정하여 그 결과를 비교 분석하였다. 결과 : 가장자리 두께는 직경이 1.00 mm 증가하였을 때 0.11 mm 증가하고 굴절력이 –1.00 D 증가하였을 때 0.50 mm 증가하며 굴절률이 한 단계 높아질 때 0.24 mm 감소한 것으로 나타났다. 무게는 직경이 1.00 mm 증가 하였을 때 0.42 g 증가하고 굴절력이 –1.00 D 증가하였을 때 0.75 g 증가하며 굴절률이 한 단계 높아질 때 0.08 g 감소한 것으로 나타났다. 가장자리 두께와 무게와의 인과관계는 직경이 가장 크고, 굴절력, 굴절률, 중심 두께 순으 로 나타났으며 가장자리 두께가 1.00 mm 증가하면 무게는 2.57 g 증가하는 것으로 나타났다. 결론 : 근시안을 비구면렌즈로 교정하고자 할 때, 굴절이상도와 안경렌즈 각 요소와의 관계를 고려하여 안경렌 즈를 선택하면 가장자리 두께 및 무게 감소에 도움이 되리라 사료된다.
In this study, an simultaneous LC-MS/MS multi-residue analytical method was developed and validated for the residues of six neonicotinoid insecticides (acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam) in honey. Sample preparation included a combination of QuEChERS extraction kit and liquid-liquid extraction method to effectively extract pesticide components from the honey matrix and optimized analytical conditions to achieve high sensitivity and selectivity. The limits of detection (LOD) and the limits of quantitation (LOQ) were set in the range of 6-15 ng/mL and 19-44 ng/mL, respectively and the correlation coefficient (R²) was greater than 0.99, confirming good linearity. In addition, the intra-day recoveries for each pesticide were 75-104%, and the coefficient of variation (CV) was less than 20%, which met the guideline recommended by the Ministry of Food and Drug Safety. The LC-MS/MS method developed in this study is expected to be used as a multi-residue analysis method for 6 neonicotinoid pesticides in honey.
Clove (Syzygium aromaticum) is a highly valued medicinal plant native to Aisa. Widely used as a spice, renowned for its medicinal properties, particularly in Ayurveda and traditional Chinese medicine. In this study, clove bud extract (CBE) was prepared at different ethanol concentrations of 50%, 80%, and 90%, respectively. The antioxidant activity of the CBE was evaluated through DPPH, polyphenol, and reducing power assays, revealing its strong antioxidant potential, with 90% ethanol being the most effective extract. HPLC analysis identified eugenol (8.7 mg/g) as the major active compound, known to possess anti-inflammatory and antioxidant properties. Given the role of oxidative stress and inflammation in atopic dermatitis (AD), the therapeutic potential of CBE was explored using a 1-chloro-2, 4-dinitrobenzene (DNCB)-induced AD mouse model. Five-week-old BALB/c mice were induced with AD by topical application of DNCB. CBE was administered topically to the affected skin (back and ear) areas for 4 weeks. The treatment of CBE significantly reduced the severity of clinical dermatitis, decreased epidermal thickness, and lowered mast cell and eosinophil infiltration in skin tissue, as observed through hematoxylin eosin staining and toluidine blue staining. The results demonstrated CBE as a promising therapeutic agent for managing AD through its regulation of skin inflammation and oxidative stress, making it a potential candidate for future treatments of inflammatory skin disorders.
Background: The increasing prevalence of smartphone use has been associated with musculoskeletal pain; however, the specific roles of demographic factors, smartphone usage time, posture, contents and state of addiction on pain in the upper-body regions remain unclear. Objects: This study investigated the influence of smartphone usage characteristics, including age, occupation, visual condition, duration, content, and posture, as well as smartphone addiction, on musculoskeletal pain in upper-body regions. This study aimed to comprehensively elucidate the factors contributing to the pain associated with smartphone use. Methods: A cross-sectional survey was conducted with 316 participants aged 20–59 years. Data on personal characteristics, smartphone use patterns, state of addiction (measured using the Smartphone Addiction Scale-Short Version), and musculoskeletal discomfort (Cornell Musculoskeletal Discomfort Questionnaire and Cornell Hand Discomfort Questionnaire) were collected. Binary logistic regression analysis identified significant predictors of pain in different body regions. Results: Younger age (20–30 years), being housewives or students, and vision impairment (shortsightedness) significantly increased the likelihood of neck, shoulder, and hand pain. Prolonged smartphone use (7–10 hours daily) and gaming were strongly associated with elevated pain risk, whereas moderate usage (1–4 hours daily) may be protect against lumbar pain. Non-neutral postures, especially side lying, have emerged as critical risk factors, with left-side lying linked to hand pain and right-side lying linked to upper back pain. Smartphone addiction consistently predicted pain across all regions by amplifying physical strain through prolonged engagement and poor posture. Conclusion: This study highlighted the multifactorial nature of smartphone-related musculoskeletal pain, emphasizing the roles of demographic characteristics, usage patterns, and addiction. These findings provide a foundation for developing tailored ergonomic and behavioral interventions to mitigate pain risks, particularly in high-use populations. Future research should validate these findings through longitudinal studies and objective measures.
Background: This study was conducted to increase meat production by 30% compared to the present by selecting a giant cow over 1,000 kg and applying biotechnologies. Methods: After OPU from 1,100 kg of giant cow, the calves were produced in Hanwoo surrogate mothers. Among 23 calves six male heads were selected, three heads of them were chosen as candidate sires, and the rest three heads were raised for 30 months for performance test. The semen of three candidate sires from the age of 22 months were collected and frozen, and the calves were produced by artificial insemination. The calf was raised to the age of 30 to 33 months and performed a progeny test. Results: The average birth weight of 23 calves born by transferring giant cow-derived embryos was 42.8 kg, and the average weight of carcass from three bulls was 615.3 kg in the performance test. In the progeny test, the average birth weight of calves born after artificial insemination of semen from giant cow-derived candidate sires was 41 kg, and the average weight of carcass after raised to the age of 30 to 33 months was 562.7 kg. As a result of performance and progeny tests, it is 148 and 96 kg higher in giant cow-derived beef cattle than the average carcass (467 kg) from general Hanwoo cattle, respectively. Conclusions: This study will have laid a great foundation for the future improvement of the Korean beef industry.
This study was conducted to investigate changes in the productivity of Italian ryegrass seeds according to the timing of harvest after heading in the southern region. The Italian ryegrass variety ‘Greencall’ was sown in Jinju, Gyeongsangnam-do, in the fall of 2022. Four harvest timings were tested (30, 40, 50, and 60 days after heading), with a randomized complete block design and three replicates. Sowing in the test plots took place on October 10, 2022, and harvesting was carried out from 30 days after heading on May 18 to 60 days. The plant height was the longest (99.1 cm) in the plot harvested 30 days after heading and decreased as the harvest was delayed. No significant differences were observed among treatments in terms of lodging resistance, disease resistance, and cold resistance. However, lodging severity increased over time after heading (7∼9). Disease incidence was also higher in plots harvested 50 and 60 days after heading. The length of the spike was shortest (38.76 cm) in the plot harvested 50 days after heading, and the number of seeds per spike was the lowest (42 seeds/spike) in the plot harvested 60 days after heading. The dry matter content of seeds increased with the delay in harvest, while dry matter yield decreased, with the lowest yield observed in the plot harvested 40 days after heading (3,031 kg/ha, p<0.05). The dry matter content of seed straw was highest at 75.73% in the plot harvested 50 days after heading and dropped to 34.99% 60 days after heading due to rainfall. The dry matter productivity of the seed straw was the lowest in the plot harvested 40 days after heading. The feed value of the seed straw also decreased with delayed harvest, with an average RFV (Relative Feed Value) of 91. In conclusion, the optimal harvest timing for fall-sown Italian ryegrass intended for seed production in the southern region appears to be 30 days after heading.
Background: Lower limb strength is crucial for stability and functional movement, such as walking, running, squatting, and balance, with the gluteus maximus (Gmax) being pivotal. Squat exercises are commonly used to strengthen the Gmax; however, the impact of ankle position on muscle activation during squats is not well understood. Objects: This study examined Gmax and lower limb muscle activation patterns in three ankle positions during squats, aiming to optimize rehabilitation strategies and enhance exercise prescriptions. Methods: Surface electromyography recorded the activation levels of the Gmax, vastus medialis oblique (VMO), vastus lateralis oblique (VLO), and biceps femoris (BF) across three ankle positions: neutral (NEU), dorsiflexion (DF), and plantarflexion (PF). A repeated-measures design was employed, involving 30 healthy adults (26 males and 4 females) aged 18–30 years. Muscle activation patterns were statistically analyzed to identify significant variations across these conditions, with the significance level set at p < 0.05. Results: During squats, DF of the ankle joint significantly increased Gmax activation compared with PF and NEU positions, indicating that an ankle position closer to DF may enhance hip extension. In contrast, PF was associated with heightened activation of the VMO and VLO, suggesting that this position may be beneficial for exercises focusing on knee stability. No significant changes were observed in the BF activation across the ankle positions, indicative of its limited involvement in response to variations in ankle positioning. Conclusion: These results underscore the importance of ankle joint positioning in modulating lower-limb muscle engagement during squatting. Ankle DF may be recommended to maximize Gmax activation, which is beneficial for hip-focused strengthening, whereas PF may supports knee stability by targeting quadriceps activation. This study provides evidence for adjusting ankle positioning during squat exercises to optimize specific rehabilitation and performance outcomes.
For centuries, humans have leveraged the health-promoting properties of plants for our well-being. While research has been conducted on numerous medicinal plants, the specific benefits of many species remain underexplored. Eupatorium Japonicum (EJ), a member of the Asteraceae family, has historically been consumed in Japan, South Korea, China, and Vietnam for its traditional use in soothing digestive issues. This study aimed to explore the radical scavenging and antiinflammatory efficacy of EJ extract using RAW 264.7 cells. The radical-scavenging effects were assessed using the DPPH and ABTS assays, where an anti-oxidative molecule in the test sample will react with a stable free radical in DPPH and ABTS causing discoloration. The anti-inflammatory efficacy was assessed using the nitric oxide (NO) assay in LPS-induced RAW 264.7 cells, where the amount of NO produced in response to infection was measured using Griess reagent. Reversetranscriptase polymerase chain reaction (RT-PCR) and real-time PCR were executed to confirm the anti-inflammatory activity by measuring the RNA levels of pro-inflammatory cytokines. The DPPH and ABTS assays revealed that EJ extract decreased oxidation in a concentration-dependent manner (7.8-1,000 μg/mL) compared to ascorbic acid and Trolox respectively. EJ extract significantly reduced NO production concentration independently. Furthermore, EJ extract showed no cytotoxic effects as determined through the MTT assay. RT-PCR and real-time PCR analyses revealed inhibition of mRNA expression of pro-inflammatory cytokines (iNOS, COX-2, TNF-α, and IL-6). Western blotting demonstrated EJ’s anti-inflammatory activity by reducing protein levels of iNOS, COX-2, TNF-α, and IL-6. These findings suggest that EJ extract exhibits anti-inflammatory activities and can be further evaluated in the future.
Background: Stroke patients commonly experience functional declines in balance and gait due to decreased muscle strength and coordination issues caused by brain damage. Through repetitive training, robot-assisted gait training (RAGT) can aid in promoting neuroplasticity in stroke patients and help them acquire effective gait patterns. Additionally, convalescent rehabilitation hospitals help to ensure rapid recovery through intensive rehabilitation training. Objects: This study investigated the effects of RAGT frequency on gait and balance recovery in stroke patients in convalescent rehabilitation hospitals, providing data to optimize rehabilitation efficiency, enhance functional recovery, and support the development of personalized strategies to ensure safer and more rapid returns to daily life. Methods: This study compared the frequency of RAGT by analyzing a group receiving two units of RAGT per day for 5 days per week with a group receiving two units of RAGT per week as part of a comprehensive rehabilitation program, totaling 16 units daily, in a convalescent rehabilitation hospital. Results: In the 10-minute walking test, statistical significance was observed both within and between groups, whereas the Functional Ambulation Category, Fugl-Meyer Assessment–lower extremities, Berg Balance Scale, and timed up-and-go tests showed significance only within groups. Conclusion: End-effector RAGT and traditional gait training significantly improve gait ability, balance, and lower limb function in stroke patients.
Background: Cisplatin, a chemotherapeutic agent often causes nephrotoxic side effects. Lipopolysaccharide (LPS) is known to induce pro-inflammatory responses, often leading to septic renal injury. We hypothesized that the combination of cisplatin and LPS would amplify renal injury, thereby improving a renal injury model. Therefore, we administered both agents to mice and evaluated renal injury indicators. Methods: Eight-week-old male C57BL/6 mice were injected with cisplatin (8, 10, or 12 mg/kg) and LPS (5 mg/kg) on days 1 and 4 following of each week. Mice were euthanized at specific time points to assess renal injury. Body weight, renal weight, area, and BUN levels were measured to evaluate renal damage. Additionally, hematoxylin and eosin (H&E) and Masson’s trichrome (MT) staining were performed to assess histological changes. Results: The combination of cisplatin and LPS significantly reduced body and renal weight compared to cisplatin alone. A high dose of cisplatin (12 mg/kg) resulted in a 50% mortality, while, lower doses (8 and 10 mg/kg) showed 100% survival. Significant renal injury was observed in the 10 mg/kg cisplatin group administered for two weeks. In the 8 mg/kg cisplatin group, no changes were observed after two weeks, but renal damage appeared after four weeks. Histological evaluations in the 10 mg/kg cisplatin group administered for two weeks showed renal injury features, including tubular damage and fibrosis. Conclusions: Administering cisplatin (10 mg/kg) with LPS for two weeks or cisplatin (8 mg/kg) with LPS for four weeks resulted in a distinct renal injury, effectively establishing a renal injury mouse model.