검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,205

        81.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study examined how Google Jamboard-based autonomous knowledge-sharing advanced language proficiency and motivation in an online intermediate–high EFL communication course. For one semester, 30 Korean first-year college students shared their learning experiences beyond the classroom, enhancing their English communication competence via a weekly Jamboard. The students speaking and perceived proficiencies and motivation changes were examined. Overall speaking proficiency increased, except for pronunciation. Students acquired the ability to selfstudy, but this was insufficient for oral practice because distance learning limited direct interactions. Perceived current proficiency increased, but imaginary proficiency and English importance did not. Their ease in using English in their daily life improved, and they felt the gap between the current and imaginary proficiencies decreased. The ideal L2 self increased, based on instrumentality and integrativeness. This finding indicates that students understood that they were undergoing the process of becoming fluent English speakers. Hence, well-organized self-directed activities can promote autonomous learning behavior to improve language proficiency and motivation.
        6,300원
        90.
        2022.10 구독 인증기관·개인회원 무료
        Boric acid-containing B-10 is used in a nuclear reactor as a coolant and absorbs thermal neutrons generated during nuclear fission in the primary circuit. Boron-containing coolant water waste is generated from maintenance, floor drain, decontamination, and reactor letdown flows. There are two options for aqueous solution waste of boric acid. One is recycling and discharge through filtration, ion exchange, and reverse osmosis. The other is immobilization after evaporation and crystallization processes. The dry powder of boric acid waste liquid can be immobilized by cement, polymer, etc. Before the mid-1990s, concentrated boric acid waste was solidified with a cement matrix. To overcome the disadvantage of low waste loading of cement waste form, a method of solidifying with paraffin was adopted. However, paraffin solids were insufficient to be disposed of as final waste. Paraffin is a kind of soft solidified material and has low compressive strength and poor leaching resistance. As a result, it was decided as an unsuitable form for disposal. In KOREA, paraffin waste form was adopted for boric acid waste treatment in the 1990s. A large amount of paraffin waste forms about 20,000 drums (200 l drum) were generated to treat boric acid waste and were stored in nuclear power sites without disposal. In this study, we want to obtain high-purity boric acid waste by oxidizing and decomposing solid paraffin waste form through a boric acid catalytic reaction. In this reaction, paraffin is separated in the form of various by-products, which can then be treated through a liquid waste treatment device or an exhaust gas treatment device. The proper temperature for sample decomposition during the catalytic reaction was set through TGA analysis. Compositions of by-products and residues generated at each stage of the reaction could be analyzed to determine the state during the reaction. Finally, the boric acid waste powder was perfectly separated from paraffin waste form with disposable products through this pyrolysis process.
        91.
        2022.10 구독 인증기관·개인회원 무료
        In 2017, Kori unit 1 nuclear power plant was permanently shut down at the end of its life. Currently, Historical Site Assessment (HSA) for MARSSIM characteristics evaluation is being conducted according to the NUREG-1575 procedure, this is conducted through comprehensive details such as radiological characteristics preliminary investigation and on-site interview. Thus, the decommissioning of nuclear power plant must consider safety and economic feasibility of structures and sites. For this purpose, the establishment of optimal work plan is required which simulations in various fields. This study aims to establish procedure that can form a basis for a rational decommissioning plan using the virtual nuclear power plant model. The mapping procedure for 3D platform implementation consisted of three steps. First, scan the inside and outside of the nuclear power plant for decommissioning structure analysis, 3D modeling is performed based on the data. After that, a platform is designed to directly measure the radiation dose rate and mapped the derived to the program. Finally, mapping the radiation dose rate for each point in 3D using the radiation dose rate calculation factor according to the time change the measured value created on the 3D mapping platform. When the mapping is completed, it is possible to manage the exposure dose of workers according to the ALARA principle through the charge of radiation dose rate over time because of visualization of the color difference to the radiation dose rate at each point. For addition, the exposure dose evaluation considering the movement route and economic feasibility can be considered using developed program. As the interest in safety accidents for workers increases, the importance of minimum radiation dose and optimal work plan for workers is becoming increasingly important. Through this mapping procedure, it will be possible to contribute to the establishment of reasonable process for dismantling nuclear power plant in the future.
        92.
        2022.10 구독 인증기관·개인회원 무료
        Maintaining fuel sheath integrity during dry storage is important. Intact sheath acts as the primary containment barrier for both fuel pellets and fission products over the dry storage periods and during subsequent fuel handling operations. In KNF, in-house fuel performance code was developed to predict the overall behavior of a fuel rod under normal operating conditions. It includes the analysis modules to predict temperature, pellet cracking and deformation, sheath stress and strain at the mid-plane of the pellet and pellet-pellet interfaces, fission gas release and internal gas pressure. The main focus of the code is to provide information on initial conditions prior to dry storage, such as fission gas inventory and its distribution within the fuel pellet, initial volumes of storage spaces and their locations, radial profile of heat generation within the pellet, etc. To upgrade the developed code that address all the damage mechanisms, the first step was a review of the available technical information on phenomena relevant to fuel integrity. Potential degradation mechanisms that may affect sheath integrity of CANDU spent fuel during dry storage are: creep rupture under internal gas pressure, sheath oxidation in air environment, stress corrosion cracking (SCC), delayed hydride cracking (DHC), and sheath splitting due to UO2 oxidation for a defective fuel. The failure by creep rupture, SCC or DHC is in the form of small cracks or punctures. The failure by sheath oxidation or sheath splitting due to UO2 oxidation results in a gross sheath rupture. The second step was to examine the technical bases of all modules of the in-house code, identify and extend the ranges of all modules to required operating ranges. This step assessed the degradation mechanisms for the fuel integrity. The objective of this assessment is to predict the probability of sheath through-wall failure by a degradation mechanisms as a function of the sheath temperature during dry storage. Further improvements being considered include upgrades of the analysis module to achieve sufficient accuracy in key output parameters. The emphasis in the near future will be on validation of the inhouse code according to a rigorous and formal methodology. The developed models provide a platform for research and industrial applications, including the design of fuel behavior experiments and prediction of safe operating margins for CANDU spent fuel.
        1 2 3 4 5