검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,696

        901.
        2016.11 서비스 종료(열람 제한)
        2012년 현재, 국내 광공업 중 자동차 및 트레일러 제조업, 금속가공제품 제조업 등 금속가공을 필요로 하는 사업체는 전체 광공업 사업체 중 약 40%를 차지하고 있으며, 이와 같은 금속가공 과정에서 필요로 하는 것이 절삭유이다. 그러나 절삭유 내에는 50~80% 정도의 미네랄 오일 외에 amins, carboxylates, chlorine, glycols와 같은 부식방지제, 안정제, 습윤제, 극압 첨가제 등 20여종 이상의 화학성분이 다량 함유되어 있으며, 인체에 지속적으로 노출 시 호흡기 자극, 천식, 폐렴, 피부염, 모낭염 및 피부암 등을 일으키게 된다. 또한 고농도의 유기성분이 함유되어 있으며 유기성분 외에도 금속가공유 내 함유된 암모니아성 질소는 수생태계에 방류되면 부영양화 및 녹조현상과 같은 문제를 일으키며, 수중에서 산화반응을 하여 아질산성 질소와 질산성 질소로 변화되면서 수계의 용존산소를 감소시켜 수계 내 오염을 일으켜 각별한 처리가 필요하다. 따라서 본 연구에서는 수용성 절삭유의 효율적인 처리를 위해 용성전극인 알루미늄과 SUS316전극을 이용하여 전극간격, 전압, NaCl 농도변화를 통해 암모니아성 질소 제거 효율에 미치는 영향을 검토하여, 전극 특성과 각 인자에 따른 제거양상을 비교하였다. 본 연구에서 사용한 시료는 수용성 절삭유 W1-1종을 초순수와 함께 5%(V/V) 희석하여 사용하였으며 성상은 Table 1과 같다. 장치구성은 반응조, 전극, 전원공급장치, 전압안정기(AVR)로 진행하였으며, 장치모식도는 다음 Fig. 1에 나타내었다.
        902.
        2016.11 서비스 종료(열람 제한)
        용수보급률 증가에 따른 용수 공급량의 증가로 인해 하폐수처리시설이 증가되어 슬러지의 발생량 또한 증가하고 있다. 반면, 슬러지 해양투기가 금지됨에 따라 슬러지의 육상처리 및 재활용 처리방법이 갈구되고 있다. 현재 슬러지는 주로 소각, 매립, 시멘트 원료로의 사용, 복토제로의 활용 등의 방법으로 처리되고 있고, 슬러지를 연료로써 활용하는 방법도 많은 연구가 이루어지고 있다. 슬러지를 건조시켰을 때 발열량은 3,000~4,500kcal/kg 정도로, 국내 무연탄과 비슷한 수준이기 때문에, 슬러지를 에너지화하는 것이 가능하다. 하지만 슬러지는 다량의 중금속 및 유해성분을 함유하고 있기 때문에 연소 또는 소각 시 가스상 오염물질 배출의 문제가 있다. 슬러지 연소 또는 소각 시 발생되는 오염물질은 슬러지에 포함된 중금속 성분은 배출원 종류 및 처리방법에 따라 차이가 있기 때문에, 충분한 연구를 통해 소각이나 연소 시 해당 슬러지에 대한 오염물질 배출 특성을 분석하여야 한다. 본 연구에서는 슬러지 연소 시 중금속 배출특성을 조사하기 위해 lab-scale drop tube furnace를 이용해 건조슬러지를 연소하였다. 수은은 입자상 수은과 배출가스 중 산화수은, 원소수은으로 구별해 조사하였으며, 수은을 제외한 중금속은 바닥재의 농도를 조사하였다.
        903.
        2016.11 서비스 종료(열람 제한)
        신재생에너지원 중 가장 큰 비율을 차지하고 있는 폐기물은 소각, 매립 등으로 폐기되고 있다. 그러나 생활폐기물 에너지화에 대한 연구가 지속적으로 진행됨에 따라, 현재 생활폐기물 처리시설에서는 SRF생산 공정을 도입하고 있는 추세이다. SRF는 평균 3,500 kg/kcal의 발열량을 나타내며, 대체연료로써 주목을 받고 있다. 그러나 SRF는 성형을 위한 추가적인 비용이 필요하기 때문에, 비성형 폐기물의 에너지화 기술에 대한 많은 연구가 진행되고 있다. 폐기물 에너지화 기술 중 가스화는 고형시료를 합성가스로 전환하는 기술로 저급연로를 고 효율화를 기대할 수 있다. 본 연구는 8ton/day 용량 pilot-scale 비성형 고형연료 가스화 공정에서 수행되었으며, 대기오염 방지시설은 사이클론, 열교환기, 탈염/탈질/탈황 장비, 습식 전기집진기, 수분제거장치로 구성되어 있다. 위의 공정에서 최근 문제가 되고 있는 미세먼지를 다단입경분석기를 이용하여 채취하였다. 채취된 시료는 건조 및 무게측정을 통해 대기오염 방지시설 구간별 미세먼지 분포를 살펴보았고, 각 대기오염 방지시설별 제어효율을 도출하였다. 추가적으로 채취된 입도별 미세먼지 시료는 ICP-MS분석을 통해 K, Cr, Mn, Ni, Cu, Zn, As, Cd, Pb에 대한 거동을 살펴보았다.
        904.
        2016.11 서비스 종료(열람 제한)
        도시생활폐기물소각재(MSWI ash)을 매립하게 되면 장기적으로 중금속이 침출된다. 급속탄산화를 통하여 MSWI ash 내의 중금속을 탄산염 형태로 고정하여, 중장기적으로 침출을 방지할 수 있다. 본 연구에서는 급속 탄산화 방법을 통하여 소각재인 fly ash의 중금속 저감 및 이산화탄소 저감에 대해 수행하였다. NH4OH, NH4SCN, 및Ca(OH)2를 이용하여 test 하였으며, 소각재의 중금속을 탄산화 전, 후를 비교하여 중금속이 침출량을 비교 하였다. 추가적으로 이산화탄소가 fly ash에 포집된 이산화탄소 저감량을 나타내면서 이산화탄소 흡수제의 재사용 가능성을 확인하였다. 흡수제를 재생하는 과정에서 나온 CO32-이온에 의해 탄산화 된 금속염들의 성분 분석을 위해, XRD (X-ray diffraction analyzer(Ultima Ⅳ))를 사용하였다. 그리고 FE-SEM(Field emission scanning electron microscope, JEOL-7800)으로 filtering후 건조시킨 샘플과 fly ash의 표면구조를 촬영하고 비교하였다.
        905.
        2016.11 서비스 종료(열람 제한)
        중금속에 의한 토양 오염이 국가적인 환경문제로 대두되면서 오염된 토양의 정화 기술 개발이 활발히 진행되고 있다. 최근 (구) 장항제련소의 중금속 오염부지에 대한 1차 정화사업이 완료되었고, 2차 사업이 진행되면서 토양세척기술이 가장 현실적인 중금속 오염 토양을 정화할 수 있는 기술로 인식되고 있다. 그러나, 토양세척공정은 75μm 미만의 미세토양에 대해서는 중금속의 화학적 추출이 거의 일어나지 않는다고 알려져 있어, 논토양과 같이 미세토 함량이 높은 부지에 대해서는 적용하더라도 그 효율이 낮아 폐기물로 버려지는 토양의 양이 많은 실정이다. 이에 본 연구에서는 미세토양에서 중금소의 추출 효율을 높이기 위해 중금속이 토양에서 어떠한 결합형태를 가지고 있는지와 중금속의 광물학적 특성을 고려하여 새로운 토양세척 공정을 제안하였다. 결합형태 분석을 통해 토양과 중금속의 결합강도에 대한 정보를 알 수 있으며, 기기분석을 통한 중금속의 광물학적 특성 분석을 통해 해당 중금속의 용해도에 대한 정보를 확인할 수 있다. 이 연구를 통해 제안된 공정을 비소, 납, 아연과 같은 중금속 오염 토양의 실험실 규모 정화에 적용하여 처리 효율 평가하였다. 비소의 경우 미세토만을 대상으로 실험한 결과 우려기준 이내로 정화할 수 있음을 확인하였다.
        906.
        2016.11 서비스 종료(열람 제한)
        범정부적으로 2016년부터 유기성 폐수슬러지 해양배출이 전면 금지되고 육상처리를 권장하고 있어 주로 산업체에서 배출하는 폐수슬러지 육상처리 비용이 지속적으로 증가할 것으로 예상되며 따라서 슬러지 처리의 어려움으로 산업체의 경쟁력을 저하할 것으로 예상된다. 산업폐수 및 일부 하수슬러지에는 다양한 중금속과 미생물 분해가 어려운 유기물이 다량 포함되어 있어 기존 기술로 처리가 곤란한 실정이다. 육상처리 기술 중에서 비용이 저렴한 방법은 주로 매립에 준하는 것이므로 슬러지에 포함된 유기물에 의해 지구온난화지수(GWP)가 이산화탄소보다 21배 높은 메탄을 다량 배출하고 있으며, 중금속에 의한 지하수와 토양 오염이 우려된다. 이러한 문제를 해결하기 위하여 중금속 함유 산업슬러지를 건조 후 용융로에서 보조연료와 열분해 가스로 1,500℃이상의 고온 화염을 형성하여 폐수슬러지에 포함된 회분과 중금속을 용융 슬래그로 배출․유리화함으로써 분진 발생 감소와 회분에 포함된 중금속성분의 용출을 방지할 수 있다. 본 연구에서는 건조 폐수슬러지를 용융하기 위하여 용융로 및 2차버너를 제작하여 용융실험을 수행하였으며, 열 회수 장치를 설치하여 열 회수 실험 또한 수행하였다.
        907.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        Generally, metal working fluids (MWFs) are used to reduce friction in metalworking processes. In addition to mineral oils, MWFs contain many chemical substances, such as anticorrosive agents, extreme-pressure additives, and stabilizers, as well as high concentrations of organics and ammonia nitrogen. Accordingly, MWFs must be managed to advanced treatment for hydro-ecological conservation. This study investigated the removal efficiency of ammonia nitrogen from MWFs according to operating time, applied voltage, distance between electrodes, and NaCl concentration using aluminum in a batch-type reactor. The experimental results were as follows: First, without NaCl, removal efficiencies of ammonia nitrogen were 69.6%, 37.9%, and 22.7%, when the distance between electrodes was adjusted to 1, 4, and 7 cm, respectively, at 15 V for 60 min. Secondly, without NaCl, removal efficiencies of ammonia nitrogen were 49.5 and 90.9% when the voltage was adjusted to 5 V and 10 V, respectively, for 60 min and 94.6% at 15 V for 40 min. Lastly, with the addition of NaCl 10 mM, the removal efficiency of ammonia nitrogen was 40.3% and 11.5% greater than that of no addition of NaCl at 5 V for 60 min and at 10 V for 30 min.
        908.
        2016.10 KCI 등재 서비스 종료(열람 제한)
        The flow of products containing valuable metal resources after discharging to waste means that it is necessary to form a plan to improve resource circulation to enhance the circulation of metal resources. In this study, waste resource circulation flow analysis of products containing cobalt and palladium after disposal was performed by classifying five stages: (1) discharge/import, (2) collection/discarding, (3) pretreatment, (4) resource recovery, and (5) product production/export. The mobile phone was one of products which were the most generating cobalt. Discharged cobalt was kept for processing or was produced as pure cobalt, cobalt oxide, or cobalt sulfate, and was used as a raw material for locks, speakers, AlNiCo magnets, tire, batteries, etc. The total amount of cobalt in the waste products was 994 tons and the recycling rate was 53.7%, indicating that 543 ton of cobalt was recycled. Palladium was discharged from waste electrical and electronic products, precious metals, petrochemical catalysts, vehicles catalysts at the end of their life, and medical equipment (dental). The palladium recovered by pre-treatment and resource recovery was recycled as a metal resource or exported. The amount of palladium recycled was 2.412 tons, of which a total of 2.512 or 96% tons is estimated to be recycled. Future research may be necessary to suggest institutional improvements, including the waste resource classification and market expansion for the recycling in the five steps based on the results of this study.