The objective of this study was to investigate the quality characteristics of Cheongsoo wine using freeze concentration fermented with 5 kinds of yeast strains (Saccharomyces cerevisiae EJ18, EJ30, HK22, HK32 and Fermivin). We compared the characteristics, volatile flavor component and physiological activity of 5 wines. The freeze concentration can increase the sugar concentration in grape juice by reducing its water content and the alcohol content of freeze-cententrated Cheongsoo wines ranged between 15.0~15.8%. The pH of wines ranged from 2.92 to 2.94 and the total acidity and soluble solid of wines ranged from 12.40~13.27. °Brix. The major organic acid in the wines was tartaric acid (4.49~5.11 mg/mL) and malic acid (7.00~7.97 mg/mL). It contains higher functional compounds in wine fermented with yeast (EJ18, EJ30, HK22, HK32) than wine fermented with fermivin. α-glucosidase and tyrosinase inhibitory activity had the highest values (78.87% and 62.25%) in wine fermented with HK22 and EJ18 yeast, respectively. 16 volatile flavor compounds (alcohols, esters, ketones, acids, and others) were detected in the Cheongsoo wines by freeze concentration. These results provide useful information that the quality characteristics of wine developed by the freeze-concentration method using grapes cultivated in Korea.
Additive manufacturing technology is recognized as an optimal technology for mass-customized distributed production because it can yield products with high design freedom by applying an automated production system. However, the introduction of novel technologies to the additive manufacturing industry is generally delayed, and technology uncertainty has been pointed out as one of the main causes. This paper presents the results of the research and analysis of current standardization trends that are related to additive manufacturing by examining the hierarchical structure of the quality system along with the various industry and evaluation standards. Consequently, it was confirmed that the currently unfolding standardization does not sufficiently reflect the characteristics of additive manufacturing technology, and rather can become a barrier to entry for market participants or an element that suppresses the lateral shearing ability of additive manufacturing technology.
The enamel powders used traditionally in Korea are produced by a ball-milling process. Because of their irregular shapes, enamel powders exhibit poor flowability. Therefore, polygonal enamel powders are only used for handmade cloisonné crafts. In order to industrialize or automate the process of cloisonné crafts, it is essential to control the size and shape of the powder. In this study, the flowability of the enamel powders was improved using the spheroidization process, which employs the RF plasma treatment. In addition, a simple grid structure and logo were successfully produced using the additive manufacturing process (powder bed fusion), which utilizes spherical enamel powders. The additive manufacturing technology of spherical enamel powders is expected to be widely used in the field of cloisonné crafting in the future.
In this work, TiO2 3D nanostructures (TF30) were prepared via a facile wet chemical process using ammonium hexafluorotitanate. The synthesized 3D TiO2 nanostructures exhibited well-defined crystalline and hierarchical structures assembled from TiO2 nanorods with different thicknesses and diameters, which comprised numerous small beads. Moreover, the maximum specific surface area of TiO2 3D nanostructures was observed to be 191 m2g-1, with concentration of F ions on the surface being 2 at%. The TiO2 3D nanostructures were tested as photocatalysts under UV irradiation using Rhodamine B solution in order to determine their photocatalytic performance. The TiO2 3D nanostructures showed a higher photocatalytic activity than that of the other TiO2 samples, which was likely associated with the combined effects of a high crystallinity, unique features of the hierarchical structure, a high specific surface area, and the advantage of adsorbing F ions.
Zinc-ion hybrid supercapacitors (ZICs) have recently been spotlighted as energy storage devices due to their high energy and high power densities. However, despite these merits, ZICs face many challenges related to their cathode materials, activated carbon (AC). AC as a cathode material has restrictive electrical conductivity, which leads to low capacity and lifetime at high current densities. To overcome this demerit, a novel boron (B) doped AC is suggested herein with improved electrical conductivity thanks to B-doping effect. Especially, in order to optimize B-doped AC, amounts of precursors are regulated. The optimized B-doped AC electrode shows a good charge-transfer process and superior electrochemical performance, including high specific capacity of 157.4 mAh g−1 at current density of 0.5 A g−1, high-rate performance with 66.6 mAh g−1 at a current density of 10 A g−1, and remarkable, ultrafast cycling stability (90.7 % after 10,000 cycles at a current density of 5 A g−1). The superior energy storage performance is attributed to the B-doping effect, which leads to an excellent charge-transfer process of the AC cathode. Thus, our strategy can provide a rational design for ultrafast cycling stability of next-generation supercapacitors in the near future.
The relationship between companies in the supply chain is a core competency of the company and key indicator which determines the survival of a company. Therefore, companies are investing in efforts for inter-company relations, and related studies have been conducted for a long time. However, in the supply chain, the positions and characteristics of suppliers and buyers are not the same. Therefore, research is needed to better understand and respond to other characteristics of the relationship between suppliers and buyers. The purpose of this study was to identify the characteristics of the resources held between the buyer and the supplier through social capital, which is a value asset that can be used as a resource created through social relations, and whether it affects the commitment of the relationship. In addition, The core of this study was to statistically analyze the differences between suppliers and buyers through this analysis. This study was conducted by surveying companies that are suppliers and buyers along the supply chain. The difference between the supplier and the buyer was revealed through empirical analysis, and statistically, the difference between the two groups was also revealed. As a result of the analysis, the higher the involvement of the buyer, the more significant the result of structural capital was, and the result was statistically opposite to the supplier. As for the relationship capital, quantitative and qualitative relationship capital had different effects on the commitment. Both the supplier and the buyer had a positive effect on relationship performance. However, the effect of emotional commitment on non-financial relationship performance has a greater degree of influence on suppliers, and it appears in statistical differences. This study revealed differences in the relationship between suppliers and buyers, and found that different investments and efforts were required for each group.
The molybdenum cup and molybdenum pin, which are the main materials of the molybdenum electrode used for the LCD BLU CCFL electrode, have not been developed in Japan and all of them are imported and used from Japan, is giving a competitive burden. In this research, to develop the manufacturing technology of molybdenum pin used for CCFL electrode of LCD BLU, development of linear processing technology, development of molybdenum wire surface treatment technology, development of wire cutting technology, production of molybdenum pin, design and fabrication of JIG and Fixture for inspection, molybdenum pin prototyping and analysis, and development of 100% molybdenum pin inspection technology. In this paper, especially, research on surface treatment technology of molybdenum wire is treated.
The global trend is the application of heat-treated omission materials to reduce the manufacturing cost of automobile steering parts. Attempts have been made to apply heat-treated omission materials in domestic, but they are delayed due to concerns over rising cold forging process costs. For quantitative prediction of cold forging process cost, fatigue properties of forging die materials were evaluated. Based on this, the die life and cost were predicted quantitatively, and the manufacturing cost reduction of automobile steering parts using heat-treated material was found to be about 11%. Also, various methods to improve die life were additionally presented.
The purpose of this study was to derive the conditions for manufacturing rice porridge with optimum properties after reheating. The characteristics of rice porridge according to the soaking time, water addition rate, heating temperature, heating time, and cooling conditions were compared using the ‘Samkwang’ cultivar. In Step Ⅰ, as the heating temperature increased, the weight change decreased and the viscosity increased, and the temperature known as the main factor of the gelatinization also appeared to affect the viscosity increase. In Step Ⅱ, the viscosity and the texture properties was not significantly different as the soaking time was reduced, and 10 minutes was suitable because of due to the shortening effect of the total process time. In Step Ⅲ, the residual heat was lowered by cooling after the rice porridge production, so the viscosity could be greatly reduced. Also, it was confirmed that the water addition rate of 900% and the heating temperature of 15 minutes were optimal manufacturing conditions. The next study will investigate the porridge processability of rice cultivars using these results.
SrMoO4:RE3+ (RE=Dy, Sm, Tb, Eu, Dy/Sm) phosphors are prepared by co-precipitation method. The effects of the type and the molar ratio of activator ions on the structural, morphological, and optical properties of the phosphor particles are investigated. X-ray diffraction data reveal that all the phosphors have a tetragonal system with a main (112) diffraction peak. The emission spectra of the SrMoO4 phosphors doped with several activator ions indicate different multicolor emissions: strong yellow-emitting light at 573 nm for Dy3+, red light at 643 nm for Sm3+, green light at 545 nm for Tb3+, and reddish orange light at 614 nm for Eu3+ activator ions. The Dy3+ singly-doped SrMoO4 phosphor shows two dominant emission peaks at 479 and 573 nm corresponding to the 4F9/2→6H15/2 magnetic dipole transition and 4F9/2→6H13/2 electric dipole transition, respectively. For Dy3+ and Sm3+ doubly-doped SrMoO4 phosphors, two kinds of emission peaks are observed. The two emission peaks at 479 and 573 nm are attributed to 4F9/2→6H15/2 and 4F9/2→6H13/2 transitions of Dy3+ and two emission bands centered at 599 and 643 nm are ascribed to 4G5/2→6H7/2 and 4G5/2→6H9/2 transitions of Sm3+. As the concentration of Sm3+ increases from 1 to 5 mol%, the intensities of the emission bands of Dy3+ gradually decrease; those of Sm3+ slowly increase and reach maxima at 5 mol% of Sm3+ ions, and then rapidly decrease with increasing molar ratio of Sm3+ ions due to the concentration quenching effect. Fluorescent security inks based on as-prepared phosphors are synthesized and designed to demonstrate an anticounterfeiting application.
The purpose of this study was to evaluate the appearance, physicochemical, physical, and fermentation properties of the fermented soybean produced by manufacturing with inoculation the different types of microbial strains. The strains were inoculated by the NSI (natural strains inoculation), and the SSI (selective strain inoculation) were treatments. The appearance showed differences in color, viscous substance, and hardness depending on strains inoculation and fermentation duration. The pH, and total acidity were 6.40~7.26%, and 0.10~0.39% respectively with differences depending on the samples. The moisture content as the fermentation duration increased, the NSI (56.03~57.66%) decreased and the SSI (56.71~58.63%) increased. The physical characteristics of the hardness increased as the fermentation duration increased for the NSI and the SSI decreased. The color values for the L, a, and b values were 47.64~58.56, 7.15~9.08, and 12.41~17.30, respectively. The α-amylase and protease activities of the SSI were the highest among all treatments. The total viable cell counts of the fermented soybean products by strains were 5.02 to 9.77 log CFU/g, and SSI (fermentation, 48 hours) was the highest. The amino-type nitrogen contents of all samples were 301.62~746.97 mg% and the SSI showed the highest content. The amino acid had the highest glutamic acid content.
In this study, we fabricate a thin- and dense-BCuP-5 coating layer, one of the switching device multilayers, through a plasma spray process. In addition, the microstructure and macroscopic properties of the coating layer, such as hardness and bond strength, are investigated. Both the initial powder feedstock and plasma-sprayed BCuP-5 coating layer show the main Cu phase, Cu-Ag-Cu3P ternary phases, and Ag phase. This means that microstructural degradation does not occur during plasma spraying. The Vickers hardness of the coating layer was measured as 117.0 HV, indicating that the fine distribution of the three phases enables the excellent mechanical properties of the plasma-sprayed BCuP-5 coating layer. The pull-off strength of the plasma-sprayed BCuP-5 coating layer is measured as 16.5 kg/cm2. Based on the above findings, the applicability of plasma spray for the fabrication process of low-cost multi-layered electronic contact materials is discussed and suggested.
In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.