Polyoxyethylene monooleate was prepared by addition of ethylene oxide to oleic acid. And also, polyoxyethylene monooleate type oil dispersant was prepared by blending polyoxyethylene monooleate, n-paraffine, sorbitan monooleate, sorbitan monopalmitate, and palm oil. Dispersion efficiency test was carried out by vertical shaking flask and swirling flask methods. Low toxic oil dispersant was prepared with polyoxyethylene monooleate, which has high biodegradability and excellent dispersion efficiency on crude oils and weathered W/O emulsions with high viscosity, and its dispersion efficiency was measured to various crude oils and weathered oils.
Cyclodextrin are obtained from starch by enzymatic degradation. The three best characterize forms are α, β, γ cyclodextrin consisting of 6, 7, and 8 D-glucose units, respectively. Each of the glucose units are in the rigid C1 chair conformation and are linked by α 1,4 bonds. This geometry gives the cyclodextrin the shape of a hollow truncated cone with the wider side formed by the secondary 2- and 3-hydroxy groups and the narrower side by the primary 6-hydroxy group. The most characteristics property of the cyclodextrin is their ability to form inclusion complexes with a wide range of guest moleculars. We syntheses per-6-substituted β-cyclodextrin derivatives and investigate structures, spectrospcopic properties. The substituted materials are piperidine, piperazin, morphorine. The synthetic compound showed a good solubility than natural β cyclodextrin in organic solvents such as methylene chloride, methanol, ethanol, etc.
The sodium α-sulfo fatty acid vinyl ester oligomers, which are oligomer type surfactants were prepared by polymerization with fatty acid vinyl acetate. The α-sulfonation of fatty acid vinyl ester oligomers were carried by direct addition of sulfur trioxide. The dispersing performance of oligomer type anionic surfactants and sodium dodecyl sulfate(SDS) in the aqueous suspension of iron oxide and titanium dioxide particles was evaluated by particle size distribution and zeta-potential measurement. As results, the particles of iron oxide and titanium dioxide were flocculated by addition of small amount of oligomer type anionic surfactants and sodium dodecyl sulfate(SDS), then the flocks redispersed by more addition of oligomer type anionic surfactants and SDS. The flocculation, redispersion process was observed in lower concentration range of oligomer type anionic surfactants than SDS. Especially, the dispersing action of sodium α-sulfo palmitic acid vinyl ester oligomer was better than sodium α-sulfo lauric acid vinyl ester oligomer.
The polyimide film surface was modified with KOH aqueous solutions or sulfuric acid. The film thickness was increased by about 10% through the modification of film surface. Hydrolysis of amide bonds and hydration of water induced the increase. The polarity of the film surface increased and identified by contact angle measurement. The depth and roughness of modified was increased. After treatment of surface with water, alkyl and 4-pentyloxyaniline were introduced on the film surface by complex formation between anionic species formed on the imide surface and ammonium ion. The newly introduced alkyl group was identified by FT-IR spectroscopy. Surface polarity reduced dramatically and the roughness was increased after introduction of ammonium salt.
In recent years, there has been considerable interest in the development of new functional surfactant including new type of anionic surfactants. Anionic surfactants, α-sulfo fatty acids that straight long chain alkyl group having from 12 to 18 carbon atoms, were synthesized with sulfur trioxide-dioxane complex to good yield. Xylitol α-sulfo fatty acid esters were obtained by reaction that the acetification and esterification of xylitol, by addition reaction with sodium chloride and hydrolysis respectively. These compounds were a new group of destructible surfactants which readily hydrolyzed and oxidized in natural water reservoirs. Physical properties of these new compounds involved surface tension, critical micelle concentration(cmc), foaming power, emulsion power, and hydrolysis properties, were measured. The cmc values of the compounds by ring method were assumed to 7.0×10-3~3.0×10-2mol/l range and surface tensions at cmc were 25~31dyne/cm respectively.
The hardening test of gelatin with 2,4-dichloro-6-hydroxy-1,3,5-triazine mono sodium salt was studied at pH 5, 7, 8 and about increasing temperature, respectively. The hardener was prepared by the reaction of cyanuric chloride with sodium hydroxide, disodium hydrogenphosphate-12-water and trisodium phosphate-12-water in the presence of water. The product was identified by elemental analyzer. IR spectrophotometer. Novel hardener can be used in photographic emulsion and showed very good hardening effect.
Antioxodative substances in Mulberry leaves were examined. Antioxidative substances in Mulberry leaves were extracted by 80% methanol agueous solution. Antioxidative activity of extract was determined by examining hydrogen donating ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the inhibitory effect on the formation of the peroxide from Linoleic acid in the test tube at 50℃. Antioxidative substance were, then, separated and indentified by thin layer chromatography(TLC), UV-Vis spectrum and High performance liquid chromatography(HPLC) methods. Hydrogen donating ability on DPPH and antioxidative ability on linoleic acid of the extracted antioxidative substance were higher than those of 100ppm butylated hydroxy toluene(BHT). The extracted antioxidative substances were separated by TLC using ethylacetate : chloroform : formic acid : water(8 : 1 : 1 : 1 v/v) as a solvent, and a spot at Rf=0.35 was detected. The spot was scraped from the plate, and extrated by methanol. The extract was analyzed by UV-Vis spetra and HPLC, and chlorogenic acid was identified as a antioxidative substance.
Polyvinyl alcohol[PVA] is useful for the production of water-soluble packaging, paper, textile sizes. PVA and Chitosan are known as biodegradable polymers. PVA/chitosan blend films were prepared by solution blends method in the weight ratio of chitosan for the purpose of useful biodegradable films. Thermal and mechanical properties of PVA/chitosan blend films such as DSC, impact strength, tensile strength and morphology by SEM were determined. As a result, The ratio of 10.0wt% PVA/chitosan blend films were similar to PVA. Blend films were completely degraded pH 4.0 better than 7.0, 10.0 in the buffer solution. Also, Blend films were rapidly degraded enzyme(β-glucosidase) solution better than pH solution by Enzymolysis.
This study was carried out to investigate characteristics and Pb(II) removal effect of natural Muan, Seosan, Kangjin clays in the batch mode test to develope the low-priced treatment agent of wastewater which contain heavy metals in order structural, optical properties and chemical compositions of natural clays from domestic have been investigated to have high specific surface area and have minerals such as SiO2 and Al2O3. As a result, removal effects of Pb(II) ions on clays were reached at equilibrium in aqueous solutions by stirring about 20minutes. The removal effect of Pb(II) ions was best for Seosan clay than Muan or Kangjin clays in terms of fixed time. The results show the possibility of continuous treatment system of wastewater which contain heavy metals by using natural clays from domestic.
Skin whitening agents, possible methods of controlling melanogenesis, and future considerations for skin whitening are discussed with respect to active ingredients and related substances in Japan.
2-phenyl-N-methyl-1,3-thiazolium perchlorate(PTP)derivatives were synthesized via addition and substitution reactions. PTP was hydrolyzed under aqueous hydrochloride. The structures of the compounds were conformed by N.M.R.,I.R., and elemental analysis.
α-sulfonated fatty acid polyethylene glycol esters with polyethylene oxide(addition, 3, 5, 10mol) were synthesized through esterification of α-sulfonated fatty acid methyl esters with alkyl chain length C12~C18. Their compounds were separated with column chromatography, and confirmed by TLC. Quantitative analysis of all the sulfonates were performed according to JIS K-3362 method, and ethylene oxide unit number were determined by ISO 2270 method. Structural properties of α-sulfonated fatty acid methyl esters and their derivatives were also identified from IR, and 1H NMR spectra.
Surface active properties of these aqueous Gemini surfactant solutions including surface tension, critical micelle concentration(cmc), foaming power, foam stability, emulsifying power and Krafft point were measured at given conditions. They showed excellent properties, being compared with conventional single-chain surfactants such as sodium dodecyl sulfonate(SDS). Their surface tensions in the aqueous solutions were decreased to 30~38 mN/m, which is lower than 39 mN/m of SDS, and their cmc values evaluated by surface tension method were 2.8×10-5~3.3×10-4 mol/L. These values were also much lower than that of SDS, 9.8×10-3 mol/L. The foaming power and foam stability, especially decyl and dodecyl compounds, were good and the emulsifying power in benzene or soybean oil was also excellent. All of the synthesized Gemini surfactants possessed good water solubility and their Krafft points were all below 0℃. As results, DDED and DDOD, Gemini surfactants which were synthesized are expected to be applied as foamers, emulsifiers and so on.
The Cuo-Magnetite and ZnO-Magnetite catalysts with various of Cuo and ZnO mole% for Carbon Dioxide decomposed reaction synthesized. The catalysts were reduced by H2 at 350℃ for 3 hours. The temperature was obtained by TGA and DSC experiments. The structures of catalysts were confirmed by X-ray diffraction experiment. The surface area of catalysts is 15~27 m2/g. The results of Carbon Dioxide decomposed ability was better H2-reduced magnetite catalysts with 0.03 mole% CuO and 0.03 mole% ZnO than others catalysts. After Carbon Dioxide decomposed reaction, catalysts were reacted H2 and created only methane.
Two-packaged polyurethane coatings were prepared by blending benzoic acid lactone modified polyester polyol(BLMPs) and HDI-biuret. BLMPs were synthesized by polycondensation of benzoic acid, viscosity depression component, with 1,4-butanediol, adipic acid, and polycaprolactone polyol. Kinematic viscosity of BLMP was gradually decreased with increasing benzoic acid content in BLMP. The low viscosity of modified polyester has an advantage of making a high-solid content coatings. After the film was coated with the prepared polyurethane coatings and cured at room temperature, the various physical properties were measured. They showed good physical properties such as flexibility, impact resistance, cross hatch adhesion, yellowness index, and rust resistance. These advantages are the results of introducing polycaprolactone polyol.
This study is to develop a new synthetic method for the nitroarenes via non-electrophilic substitution. Direct nitration at the C-1 position of isoquinoline has never been reported and substitution in isoquinoline under the normal nitration condition occurs at C-5 and C-8. We have demonstrated a facile one-step sythetic method for the nitration of isoquinolines at the C-1 position, which involves the electrophilic attack of a DMSO-Ac2O complex, followed by nucleophilic addition of nitrate ion to this intermediate. Since the reaction is simple and mild, this method has preparative merit since 1-nitroisoquinolines are not readily accessible by other methods. Application to the synthesis of poly nitroarenes from the corresponding anilines was also described.
The catalytic oxidations of several cycloolefins in CH2Cl2 were been investigated using Mn(III)-, Fe(III)-porphyrin complexes as a catalyst and sodium hypochlorite as a terminal oxidant. Porphyrins were (p-CH3O)TTP, (p-CH3)TTP, TPP, (p-F)TPP, (p-Cl)TPP and (F20)TPP (TPP = tetraphenylporphyrin), and olefins were cyclopentene, cyclohexene and cycloheptene. The substrate conversion yield was discussed according to the substituent effects of metalloporphyrin. The conversion yield of substrate by changing the substituent of TPP increased in the order of p-CH3O 〈 p-CH3 〈 H 〈 p-F 〈 p-Cl, which was consistent with the sequence of 4Σ values of TPP. The conversion of cycloalkene followed the order of C5 < C6 < C7.
Displacement current measuring technique has been applied on the study of monolayers of functional polyimide containing azobenzene derivatives. The displacement current was generated from monolayers on the water surface by monolayer compression and expansion. Displacement current was generated when the area per molecule was about 70a2 and 100a2. Displacement currents were investigated in connection with monolayer of long chain alkylamines. It was found that the maximum of displacement current appeared at the molecular area just before the initial rise of surface pressure in compression cycles of polyamic acid and long chain alkylamines.
The emulsion stability of W/O emulsion prepared by D phase emulsification during storage and handling is studied by using phase diagrams. The process of D phase emulsification begins with the formation of isotropic surfactant solution, followed by formation of oil-in-surfactant (O/D) gel emulsion by dispersion of octamethylcyclotetrasiloxane(OMCS) in the surfactant solution. Polyols were essential components for this purpose. To understand the function of polyols, the solution behavior of nonionic surfactant/oil/water/polyol systems were investigated by the ternary phase diagrams of polyoxyethylene oleyl ether/OMCS/propylene glycol(PG) aqueous solutions. The addition of PG increased the solubility of oil in the isotropic surfactant phase. D phase emulsification method has been applied to a new type of cosmetics. By using this emulsification technique, O/W emulsion were formed without a need for adjust of HLB. Fine and stable W/O emulsions were prepared by D phase emulsion.
All the surface activities including surface tension, foaming power, foam stability, emulsifying power, dispersion effect, and detergency were measured and critical micelle concentration(cmc) was evaluated in dilute aqueous solution. The cmc evaluated by the Ring method was 10-3~10-4mol/L in case of monoesters, and 10-3~5.0×10-5mol/L in case of diesters, respectively. Surface tension of the aqueous solution was decreased to 45~50dyne/cm, showing the tendency that the ability of lowering the surface tension was dependent on increasing of carbon atom number in alkyl chain. Foaming power of all the monoesters was better than that of diesters. while foam stability of diesters was to the contrary. Emulsifying power of soybean oil or benzene was specially expected to be good for emulsifiers in industrial application fields. HLB values of monoesters and diesters evaluated by Griffin's method were in the range of 8 to 12. Dispersion property of ferric oxide was stable in the range of 4.5×10-5~5.0×-4mol/L in case of monoesters, and 10-5~10-4mol/L in case of diesters.