Recent global efforts to combat climate change have accelerated, with nations adopting carbon strategies such as carbon taxes and emission trading system (ETS) to support their net-zero commitments. These initiatives enable governments to enforce mitigation while maintaining their dual goal of fostering economic growth. Vietnam, a developing country, has emerged as a proactive participant by launching a national ETS, drawing from international best practices and domestic geographical advantages. This article examines the process and challenges involved in designing and implementing an ETS in Vietnam, exploring the necessary policy frameworks, institutional structures, and market mechanisms. It highlights key considerations such as the selection of sectors and entities to be covered, the allocation of emission allowances, and the establishment of new market management solutions. This article concludes with strategic recommendations to support the development of a successful and sustainable ETS mechanism in developing country like Vietnam.
본 연구에서는 국내에서 처음 발견된 Aulacophoroides hoffmanni (Takahashi, 1937)를 최초로 보고한다. 2024년 야외조사에서 한국의 서부 2개 지역의 등나무(Wisteria floribunda (Willdenow))에서 심각한 피해를 주고 있는 A. hoffmanni를 확인하였다. 무시성충의 상세한 형태 기재와 계측값을 제시하였으며, 생체 및 슬라이드 표본 사진을 포함하였다. 이 종은 등나무에 심각한 피해를 주고 있어 관상용 등나무의 주요 해충이 될 것으로 예상된다.
This study aimed to evaluate the effects of different feeding levels of domesticated barnyard millet and imported Bermuda hay on the growth performance and structural development of female and male growing goats. A 4×4 Latin square design was used, involving 8 goats with an average age of 3 months: 4 females and males with an initial body weight (BW) of 10.6 kg and 16.0 kg, respectively. Goats were randomly assigned to 4 dietary treatments: T1 (1.5% BW barnyard millet), T2 (1.5% BW Bermuda hay), T3 (2.0% BW barnyard millet), and T4 (2.0% BW Bermuda hay) over a 22-week period. Results indicated that the highest final body weight (FBW) was significantly observed at the highest feeding level (T4), with females reaching 14.9 kg and males 20.9 kg, while the highest average daily gain (ADG) values were recorded for females in T3 at 75.7 g/d and males in T4 at 81.0 g/d (p<0.05). Dry matter intake (DMI) was highest in the T4 group for both females (437.4 g/d) and males (635.9 g/d), with significant differences observed across treatments (p<0.05), whereas the feed conversion ratio (FCR) showed an improving trend, particularly with a value of 6.0 for females in T4. For structural development, the highest feeding levels led to significant increases in body length, body depth, chest width, and chest girth of both sex. Female and male in T4 achieved body lengths of 53.5 cm and 61.8 cm, and body depths of 45.2 cm and 54.8 cm, respectively. Chest width and girth reached 15.9 cm and 66.5 cm in males, and 13.5 cm and 56.5 cm in females. In conclusion, higher feeding levels, especially with Bermuda hay, may positively influence the growth performance and structural development of goats.
The role of the gut microbiota in colorectal cancer (CRC) development has garnered attention, highlighting probiotics as potential adjuncts in CRC prevention and treatment. In recent years, probiotics and their derivatives have demonstrated mechanisms that may contribute to anticancer properties. This study investigates the cytotoxic effects of Bifidobacterium bifidum KCTC 3357, Lacticaseibacillus rhamnosus KCTC 5033, Limosilactobacillus reuteri VA 103, Bacillus galactosidilyticus VA 107, and Lactococcus taiwanensis VE101 on CT-26 mouse colon carcinoma cells using live cells, heat-killed cells (paraprobiotics), and cell-free supernatants (CFS, postbiotics) through an MTT assay. The results indicate that live bacterial strains, such as KCTC 3357, VA 103, and VA 107, promoted CT-26 cell viability, while heat-killed cells and CFS exhibited dose-dependent cytotoxicity. Inactivated forms of KCTC 3357 and VE 101, as well as CFS at 10 mg/mL concentration of KCTC 5033, VA 103, and VE 101, showed the strongest antiproliferative effects. These findings suggest that non-viable probiotic derivatives, such as paraprobiotics and postbiotics, offer promising therapeutic potential for CRC, providing a safer and more stable alternative to live probiotics. However, further research is required to explore their mechanisms of action, in vivo efficacy, and potential clinical applications.
본 연구는 기능성 화장품 소재 개발을 목표로 효모 유래 MPC의 세포 생리활성을 조사하였 다. 피부 세포주에 처리된 Cu와 Zn 이온 모두 세포 독성이 확인되었지만, 정제된 MPC는 결합된 금속 이온의 세포 독성을 획기적으로 제거하였다. 게다가 특정 농도의 MPC는 대조군과 비교하여 세포 생존 율을 오히려 약 20% 증가시켰다. MPC 중 효모 펩타이드-Cu(YP-Cu)는 UVB 자극으로 유도되는 세포 내 활성산소의 양을 약 30% 정도 유의하게 감소시켰지만, YP-Zn은 영향을 미치지 못했다. 또한, YP-Cu 처리는 피부 세포에서 콜라겐 유전자의 발현량을 2배 증가시켰고, 프로콜라겐 분비량은 1.7배 증 가시켰으며, UVB 자극에 의한 콜라겐 유전자의 발현 저해에도 효과적으로 대응했다. 결론적으로, 유리 금속 이온 자체는 세포독성 효과로 인해 화장품 소재에 적합하지 않지만, 정제된 MPC, 특히 YP-Cu는 이러한 금속 이온의 독성을 효과적으로 상쇄하고 세포 생존율을 향상시킬 뿐만 아니라, UVB 자극에 따 른 유해 효과를 완화하기 때문에 잠재적 기능성 화장품 소재로 사용될 수 있다.
Background: The increasing demand for real-time professional fitness coaching has led to a need for accurate exercise posture recognition using artificial intelligence. Objectives: To compare the performance of Feedforward Neural Network (FNN) and Stacked Long Short-Term Memory (LSTM) models in classifying fitness posture images using detailed joint coordinate labeling. Design: Comparative analysis of machine learning models using a labeled dataset of fitness posture images. Methods: A dataset from AI-hub containing images and data of 41 exercises was used. Five exercises were selected and processed using a custom program. Data was converted from JSON to CSV format, augmented with joint condition information, and analyzed using Google Colab. Results: The best FNN model achieved a training error of 1.21% and test error of 9.08%. The Stacked LSTM model demonstrated superior performance with a training error of 1.05% and test error of 6.09%. Conclusion: Both FNN and Stacked LSTM models effectively classified sequential fitness images, with Stacked LSTM showing superior performance. This indicates the potential of Stacked LSTM models for accurate fitness posture classification in real-time coaching scenarios.
Background: Artificial intelligence (AI) research on physical fitness posture estimation has been limited by a lack of comprehensive datasets and guidelines. This study analyzes the fitness image dataset provided by Korea's AIHub platform to advance posture estimation algorithms from exercise prescription and behavioral analysis perspectives. Objectives: To analyze fitness movements and guide correct exercise posture using AI-based visual and auditory feedback. Design: Descriptive analysis of a large-scale dataset. Methods: The study examined image and JSON labeling files from AI-Hub, analyzing 6.39 million fitness images across 41 exercise types. Data structure, exercise states, and annotation characteristics were analyzed in detail. Results: The dataset encompasses 816 distinct exercise states, captured from five camera angles with 24 key body points labeled per posture. Exercises were categorized into full-body workouts (17), barbell/dumbbell exercises (16), and furniture exercises (8). Gender distribution was 76% male and 24% female, with 41% in the 27-29 age group. The dataset allows for detailed analysis of correct and incorrect postures. Conclusion: This comprehensive analysis of the AI-Hub fitness dataset provides a robust foundation for developing AI models for fitness posture evaluation and feedback, benefiting exercise coach web/app service developers.
This study was conducted in the San Pedro Department to determine the impact of different soil management practices on sesame productivity. Different tillage methods (conventional deep tillage, minimum tillage, and no-tillage), crop rotations (monoculture, double, and triple rotation), various combinations of green manure, and appropriate doses of chemical fertilizers were studied. The results revealed that the no-tillage method combined with crop rotation (corn-cotton-sesame) and fertilization had the highest productivity of 1,548 kg/ha. In contrast, the conventional deep tillage method without fertilization showed the lowest productivity with 614 kg/ha. Incorporation of summer green manures (Mucuna pruriens) in minimum tillage methods with fertilization significantly improved productivity (1,010 kg/ha) in comparison with the same tillage method and fertilization but without Mucuna (720 kg/ha), which highlights the synergistic effects of combining green manures with chemical fertilizers. The treatment of winter green manures consisting of black oat + white lupine and black oat + radish has also significantly improved the productivity of sesame with 904 and 900 kg/ha, respectively, compared to the non-use of winter green manure and the use of chia, which had productivities of 695 and 298 kg/ha, respectively. The best chemical fertilization doses of nitrogen (urea 45% N), phosphorus (46% P2O5), and potassium (60% K2O) were determined through tests with increasing doses of each nutrient, maintaining 40 kg/ha as the base for the other two. The highest productivity was obtained with N, P, and K levels of 70 kg/ha each, resulting in productivities of 1,421, 1,522, and 1,486 kg/ha. However, the maximum profit compared to the input is obtained with doses of 50 kg/ha for N and 60 kg/ha for P and K, giving a productivity of 1,390, 1,510, and 1,421 kg/ha, respectively.
Probiotics have been evaluated as therapeutic agents for cancer treatment in an increasing number of studies. This study investigated the inhibitory and cytotoxic effects of specific Lactobacillus strains on a human colorectal adenocarcinoma cell line (HT-29). The strains assessed were Limosilactobacillus (L.) reuteri VA 102, Ligilactobacillus (L.) animalis VA 105, and Limosilactobacillus (L.) reuteri KCTC 3594 (ATCC 23272). The viability of HT-29 cells was evaluated using the MTT assay. The findings revealed that cell-free supernatants (CFS) exhibited significant anticancer effects. Heat-inactivated L. reuteri VA 105 and L. reuteri KCTC 3594 induced a pronounced reduction in cell viability. Furthermore, live cultures of L. reuteri VA 105 and L. reuteri VA 102 also showed reduced cell viability compared to the control group. These results suggest that CFS and heat-inactivated cells may be more suitable for therapeutic applications than live bacteria owing to their improved safety profiles and reduced potential for adverse effects. Our findings also emphasize the potential anticancer benefits of these LAB strains.
Background: The ability of adeno-associated viruses (AAVs) to transduce various cell types with minimal immune responses renders them prominent vectors for gene editing (GE), with different AAV serotypes exhibiting distinct transduction efficiencies due to their specific cellular tropism. However, detailed molecular processes of AAV infection and penetration, as well as the optimal serotype for specific purposes, remain poorly understood. Porcine models are widely used in research benefitting both human and livestock due to anatomical and physiological similarities to humans. Methods: Transduction efficiencies of 18 AAV serotypes (AAV1–9, 6.2, rh10, DJ, DJ/8, PHP.eB, PHP.S, 2-retro, 2-QuadYF, and 2.7m8) were evaluated in immortalized porcine lung epithelial cells (pLCsImt) and pulmonary alveolar macrophages 3D4/31 (PAMs 3D4/31). Results: We found AAV2, DJ, and 2.7m8 to be the most effective in both cell types. The highest enhanced green fluorescent protein expression of 52.46 ± 2.4% in pLCsImt and 64.08 ± 2.4% in PAMs 3D4/31 was observed for AAV2, while negligible transduction was observed for AAV4, rh10, DJ, PHP.eB, PHP.S, and 2-retro. AAV-DJ showed superior transduction efficiency in PK-15, as compared to AAV2 and 2.7m8. Results emphasize the cell type-specific nature of AAV serotype transduction efficiencies. Notably, AAV2 was most effective in both lung and macrophage cells, whereas AAV-DJ was more effective in renal cells. Conclusions: Our findings suggest that AAV2 was identified as the most efficient serotype for transducing pLCsImt and PAMs 3D4/31, compare to the PK-15 cells. Understanding cell type-specific preferences of AAV serotypes offer crucial insight for tailoring AAV vectors to specific tissue and optimizing genome editing strategies, with potential implications for the advancement of personalized medicine and development of treatments for human and livestock.
Afoxolaner is an insecticide and acaricide that belongs to the isoxazoline chemical compound group. it has been used as an active pharmaceutical ingrdient in veterinary medicine to treat fleas and ticks in dogs. When patents expire between 2026 and 2066, it is expected that many products will be applied for approval as generic products, and reserch to establish accurate quality control methods must be conducted and managed. HPLC method was developed for the quantitative and qualitative of afoxolaner in veterinary medicinal products. The separation of active constituents for afoxolaner was achieved on a RP18 (4.6 x 150 mm, 5 μm) column using Water : Acetonitrile : MeOH (25:30:45 v/v/v) as mobile phase, with UV detection at 245 nm. The method was validated for specificity, linearity, accuracy and precision. All calibration curves showed good linearity (R2 of 0.999) within the concentration ranges (12.5 to 400 μg/mL). For accuracy, the recovery rate was calculated by spiking three concentrations of standard into the sample blank. The recovery rate was calculated to be 99.70~100.58%. Precision was measured 9 times repeatedly through intra-day, inter-day tests using standard. It showed excellent precision by satisfying the relative standard deviation of less than 2% both intra-day and inter-day. Limit of detection (LOD) and limit of quantitation (LOQ) were 2.0 μg/mL and 6.1 μg/mL, respectively. This method was successfully applied to analyzing afoxolaner drugs distributed in Korea. The HPLC method described in this study is accurate and reproducible and could be applied for the analysis of veterinary drugs of afoxolaner.
Silage inoculants, which include beneficial microorganisms like lactic acid bacteria (LAB), play a vital role in modern silage production by enhancing fermentation quality. This study evaluated the effectiveness of various commercial inoculants on the fermentation dynamics of Italian ryegrass silage over 45 days. The treatments included a control group and five inoculant formulations: T1 (Lactiplantibacillus plantarum), T2 (Lactiplantibacillus plantarum and Pediococcus pentosaceus), T3 (Lactiplantibacillus plantarum and Pediococcus pentosaceus and Lactiplantibacillus buchneri), T4 (Lactiplantibacillus plantarum and Lactiplantibacillus acidophilus and Lactiplantibacillus bulgaricus), and T5 (Lactiplantibacillus plantarum and Pediococcus pentosaceus and Enterococcus faecium). After 45 days, all treatment groups exhibited significantly higher crude protein (CP) content compared to the control group (80.64 g/kg dry matter (DM), p<0.05). Treatments T2 and T5, which incorporated combinations of Lactiplantibacillus plantarum, Pediococcus pentosaceus and Enterococcus faecium, showed higher CP contents at 105.53 and 107.05 g/kg DM, respectively. The inoculated silages also demonstrated a rapid pH reduction within the early days, with Lactiplantibacillus plantarum in T1 reducing the pH to 4.0 within four days. Additionally, inoculated treatments had significantly higher lactic acid levels than the control (67.96 g/kg DM, p<0.05), and T3 (Lactiplantibacillus buchneri) produced higher acetic acid levels (16.07 g/kg DM, p<0.05) than other inoculants. The control group also had a notably higher ammonia nitrogen content. In conclusion, while single-strain inoculants like Lactiplantibacillus plantarum are effective for rapid acidification, the use of combined bacterial strains can further enhance silage quality by improving lactic acid fermentation and nutrient preservation, particularly in treatments like Lactiplantibacillus plantarum and Pediococcus pentosaceus and Lactiplantibacillus buchneri and Enterococcus faecium.
Background: South Korea has recently faced record-high temperatures, which have adversely affected dairy production. Holstein cows, the primary dairy breed globally, are particularly sensitive to heat stress. In contrast, Jersey cows have shown greater heat tolerance, as demonstrated by phenotypic studies. Methods: We investigated physiological and molecular responses to heat stress in Holstein and Jersey cows by measuring rectal temperature, milk yield, and average daily gain, confirming Holstein cows’ greater vulnerability. To explore molecular mechanisms, we analyzed circulating microRNA profiles from whole blood samples collected under heat stress and normal conditions using microRNA-sequencing. Differential expression patterns were compared between the two breeds to identify biological pathways associated with heat stress. Results: Four microRNAs (bta-miR-20b, bta-miR-1246, bta-miR-2284x, and bta-miR- 2284y) were significantly differentially expressed in both breeds under heat stress (|FC| ≥ 2, p < 0.05). Notably, bta-miR-20b and bta-miR-1246 were linked to corpus luteum function and progesterone biosynthesis, while bta-miR-2284x and bta-miR- 2284y were associated with immune responses. A comparison of 11 potential heat stress-related microRNAs identified in previous studies of Holstein cows revealed consistent expression trends in Jersey cows, albeit with lower fold changes, suggesting their superior heat resilience. Conclusions: Our study highlights the physiological and microRNA-based differences in heat stress responses between Holstein and Jersey cows. Jersey cows exhibited greater resilience, supported by more stable microRNA expression profiles and improved heat stress indicators, making them a promising breed for dairy production in increasingly hot climates.
Following the previous study, which investigated the pharmacological properties of the Technekitty injection (Tc-99m), the toxicity of a single intravenous administration of the Technekitty injection (Tc-99m) and the side effects that may occur at the diagnostic dose were confirmed. The Technekitty injection (Tc-99m) was administered intravenously once at a dose of 0, 0.67, 2.0, and 6.0 mCi/kg to 5 male and female rats per group. Mortality, general symptom observation, and weight measurement were performed for 2 weeks, followed by observation of autopsy findings. There were no deaths, and no statistically significant weight change was observed. No abnormal systemic signs related to the Technekitty injection (Tc-99m) were observed. These results confirmed that Technekitty injection (Tc-99m) can be safely administered intravenously at doses up to 6.0 mCi/kg. Additionally, technetium-99m at an average dose of 2 mCi (74 MBq) has been verified as a diagnostic dose without adverse effects, allowing the Technekitty injection (Tc-99m) to be used safely without side effects at this dosage. This study demonstrates that the Technekitty injection (Tc-99m) has a wide safety margin, supporting its potential for clinical application. Moreover, these findings align with the nonclinical safety standards for radiopharmaceuticals, reinforcing its utility in veterinary medicine. The Technekitty injection (Tc-99m) is expected to be applicable for clinical diagnosis as a veterinary drug in Korea.
This study proposes a mathematical model to optimize the fighter aircraft-weapon combinations for the ROKAF(Republic Of Korea Air Force). With the recent emergence of the population declining issue in Republic of Korea, there is an urgent need for efficient weapon system operations in light of decreasing military personnel. In order to solve these issues, we consider to reduce the workload of pilots and maintenance personnel by operating an optimal number of weapons instead of deploying all possible armaments for each aircraft type. To achieve this, various factors for optimizing the fighter-weapon combinations were identified and quantified. A model was then constructed using goal programming, with the objective functions based on the compatibility, CEP(Circular Error Probable), and fire range of the weapons, along with the planned wartime mission-specific weapon ratios for each aircraft type. The experimental result's analysis of the proposed model indicate a significant increase in mission performance efficiency compared to the existing system in both operational and maintenance aspects. We hope that our model will be reflected to help improve the operational capabilities of Republic of Korea Air Force.