세척수에 포함된 무기물질의 함량이 먹는 물의 수질기준을 초과하여, 참외 GAP 인증을 받지 못하는 사례가 최근 들어 종종 발생하고 있다. 이에 농업현장에서는 껍질을 제거하여 먹는 참외의 소비특성을 감안하여 세척수 수질기준의 일부를 완화해 줄 것을 요청하고 있다. 이에, 본 연구에서는 성주 지역에서 2017-2019년 GAP 인증 참외의 세척에 이용되는 지하수 142건의 수질자료를 근거로 무기물질 4종(불소, 비소, 철, 망간)의 인체 위해성을 평가 하였다. 연구 결과, 성주 지역 GAP 참외의 세척에 사용 되는 지하수를 음용수 수준으로 섭취하는 우리나라 국민의 4종 무기물질에 대한 HQ는 모두 평균 0.10 이하로 안전한 수준이었다. 특히, 심미적 영향물질인 철, 망간의 경우 성주 지역 지하수를 음용수 수준으로 섭취하는 경우 HQ 가 평균 0.00. 과다노출군의 경우 0.01나타났는데, 일반 참외를 섭취하는 국민의 HQ(평균 0.01, 과다노출군 0.03)보다 낮은 수준이었다. 따라서, 성주 지역 지하수를 GAP 농산물의 세척에 활용하더라도 철, 망간을 포함한 4종 무기 물질이 인체에 미치는 영향은 미미할 것으로 생각된다.
본 연구는 영양부추의 미생물학적 안전성을 확보하기 위하여 이산화염소와 차아염소산나트륨을 이용하여 미생물의 저감효과를 분석하고, 최적의 영양부추와 소독제의 비율을 결정하기 위하여 수행하였다. 이를 위하여 영양부추에 E. coli, Salmonella spp., S. aureus, B. cereus을 7.0 log CFU/g 정도로 접종 한 후 이산화염소는 3, 5, 10, 25, 100 ppm 차아염소산나트륨은 100, 150, 200 ppm에서 5, 10, 30, 60분간 처리하였으며, 또한 유기물이 이산화염소와 차아염소산나트륨의 효과에 미치는 영향을 분석하기 위해 영양부추와 소독제를 1 : 2, 1 : 4, 1 : 9, 1 : 19 비율로 처리 하여 소독제의 효과를 분석하였다. 그 결과, 소독제의 농도에 따른 저감효과는 차아염소산나트륨 150 ppm, 이산화 염소 50 ppm으로 30분간 처리시 일반세균수는 2.0 log CFU/ g 정도 감소효과를 나타내었으며, 식중독세균은 차아염소 산나트륨 100 ppm, 이산화염소 3 ppm에서 약 2.0 log CFU/g 정도 감소효과를 보였다. 한편, 이산화염소의 경우 50 ppm 으로 30분간 영양부추를 처리할 경우 탈색 등 상품성이 저하되어 현장 적용이 어렵다고 판단되었다. 또한 영양부 추와 소독제 처리 비율에 따른 미생물 저감효과는 일반세 균의 경우 1 : 4에 비하여 1 : 9에서 유의적으로 높은 저감 효과를 보였다(p < 0.05). 확립된 기술을 영양부추 생산농 장에 적용한 결과 일반세균수의 경우 2.7 log CFU/g, 대장 균군의 경우 4.0 log CFU/g의 감소효과를 보였다. 따라서 영양부추를 세척이후 차아염소산나트륨 150 ppm에서 1 : 9 정도의 비율로 30분간 침지하면 미생물 안전성을 향상시 킬 수 있으며, 최종 소비자에게 보다 안전한 부추의 공급이 가능할 것으로 판단된다.
본 연구는 다양한 농업 환경에서 채집된 파리의 분비물에서 E. coli을 분리하고 분리된 E. coli의 병원성유전자 및 항생제내성을 조사하기 위하여 수행되였다. 파리는 과일농장(n = 19), 장류생산농장(n = 9), 생활쓰레기 야적장(n = 46), 축사(n = 66), 도축장(n = 38), 퇴비장(n = 10)에서 총 188 마리를 채집하여 토사물과 배설물로부터 E. coli을 분리 및 동정하였다. 그 결과, 채집된 파리의 63%(119/188)에서 E. coli이 검출되었으며 특히 도축장에서 채집된 파리에서 E. coli의 검출률이 89%(34/38)로 가장 높았다. 또한 분리된 E. coli을 대상으로 병원성 유전자 8종(ST, LT, VT1, VT2, aggR, bfpA, eaeA, ipaH)을 조사한 결과, 도축장에서 채집 된 파리에서 분리된 E. coli 중 91%(31/34)가 장독소를 생산할 수 있는 ST유전자를 보유하고 있었다. 분리된 E. coli 의 16%(31/188)가 1종 이상의 항생제에 내성을 보였다. 특 히, 항생제사용빈도가 높은 축사에서 채집된 파리의 E. coli 경우에는 59%(23/39)가 항생제 내성을 나타내었다. 분 리된 항생제 내성 E. coli 균주 중 10%(12/119)는 2종 이 상의 항생제에 내성을 보였고, 모두 축사 채집 파리에서 분리된 균주였으며, 이 중 2개 균주는 다재내성의 지표인 ESBL (Extended-spectrum beta-lactamase)에 양성을 나타내었다. ESBL 양성균주 중 1 균주는 7종의 항생제에 내성 을 보였이는 것으로 조사되었다. 본 연구의 결과, 축산환 경 서식 파리에서 분리된 E. coli은 병원성 유전자를 보유 하고 있을 가능성이 높을 뿐만 아니라 항생제에 내성을 나타낼 가능성도 높기 때문에 농식품을 생산하는 농장이나 식품공장은 가급적 축산환경으로부터 일정한 거리를 두거나 방충망 등의 차단조치가 필요할 것으로 판단된다.
Foodborne disease outbreaks associated with produces have been increasing in occurrence worldwide. This study investigated microbial contamination levels on thirteen kinds of agricultural products from farms stage to evaluate potential hazards associated with foodborne illness. A total of 1,820 samples were collected in major cultivating area from 2013 through 2015, and analyzed to enumerate aerobic bacterial counts, coliforms/E. coli, Bacillus cereus and Staphylococcus aureus. In addition, the prevalence study for four kinds of microorganisms (Escherichia coli, E. coli O157:H7, Salmonella spp. and Listeria monocytogenes) was performed on each sample. Aerobic bacterial counts ranged from 0.01 to 7.18 log CFU/g, with the highest bacterial cell counts recorded for watermelon. Coliforms were detected in 651 samples (35.8%) with a minimum of 0.01 log CFU/g and a maximum of more than 5 log CFU/g. B. cereus was detected in 169 samples (9.3%) ranging from < 0.01 to 2.48 log CFU/g among total samples analyzed. S. aureus was detected in 14 samples (0.7%) with a minimum of 0.01 log CFU/g and a maximum of 1.69 log CFU/g. E. coli was detected in 101 samples (5.5%) among 1,820 samples. E. coli O157:H7, Salmonella spp. and L. monocytogenes were not detected in any of the samples. The microbial contamination levels of several agricultural products determined in this study may be used as the fundamental data for microbiological risk assessment (MRA).
This study was conducted to develop an agent-based computing platform enabling simulation of on-farm produce contamination by enteric foodborne pathogens, which is herein called PPMCS (Preharvest Produce Microbial Contamination Simulator). Also, fecal contamination of preharvest produce was simulated using PPMCS. Although Agent-based Modeling and Simulation, the tool applied in this study, is rather popular in where socio-economical human behaviors or ecological fate of animals in their niche are to be predicted, the incidence of on-farm produce contamination which are thought to be sporadic has never been simulated using this tool. The agents in PPMCS including crop, animal as a source of fecal contamination, and fly as a vector spreading the fecal contamination are given their intrinsic behaviors that are set to be executed at certain probability. Once all these agents are on-set following the intrinsic behavioral rules, consequences as the sum of all the behaviors in the system can be monitored real-time. When fecal contamination of preharvest produce was simulated in PPMCS as numbers of animals, flies, and initially contaminated plants change, the number of animals intruding cropping area affected most on the number of contaminated plants at harvest. For further application, the behaviors and variables of the agents are adjustable depending on user’s own scenario of interest. This feature allows PPMCS to be utilized in where different simulating conditions are tested.
본 연구는 수출 딸기 중 병원성 E. coli와 Salmonella spp.를 제어하기 위하여 이산화염소 가스 농도, 상대습도, 시간에 따른 이산화염소 가스의 미생물 저감효과를 조사하였다. 병원성 E. coli, salmonella spp.를 접종한 딸기에 이산화염소 가스 농도(10, 20, 30, 40, 50 ppmv), 상대습도(50, 70, 90%), 처리시간(0, 5, 10, 20, 30분)에 대한 삼요인 실험을 하였다. 그 결과, 각 처리 조건 간의 상호작용이 나타났으며 미생물 저감효과는 상대습도가 가장 높은 조건인 90%에서 이산화염소 가스 농도와 처리시간의 값이 증가할수록 높아지는 경향이 있었다. 상대습도 90%, 이산화염소 가스 농도 50 ppmv에서 처리시간에 따른 미생물 저감화 효과는 5분 동안 처리하였을 때 병원성 E. coli와 Salmonella spp.이 각각 0.5, 0.7 log CFU/g 정도 감소하였으나 20분간 처리하였을 때는 각각 2.07과 2.28 log CFU/g 정도 감소하였다. 따라서 본 연구는 수출 딸기 중병원성 E. coli와 Salmonella spp.를 제어하기 위한 최적의 이산화염소가스 처리 조건을 확립한 결과로서 수출 딸기의 미생물 안전성 향상에 기여할 수 있으리라 사료된다.
본 연구는 어린잎 채소와 생산환경에서 미생물학적 오염도를 조사하고자 수행하였다. 이를 위하여 11종의 어린 잎채소와 종자, 관개용수, 상토, 작업도구 및 작업자 장갑 등 총 126개의 시료를 채취하여 위생지표세균(대장균군, E. coli)과 병원성미생물(Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus)을 조사하였다. 그 결과, 종자와 관개용수를 제외한 대부분의 시료에서 대장균군이 검출되었다. E. coli는 분석시료 중 10.3% (13/126)에서 검출되었으며 검출된 시료 로는 관개용수, 칼, 작업자 장갑, 및 다채, 적무, 청경채였다. 또한 B. cereus는 상토, 작업도구 및 청경채, 비트, 적근대 등 총 38% (48/126)의 시료에서 검출되었다. 한편 E. coli O157:H7, Salmonella spp., L. monocytogenes는 검출되지 않았다. 본연구의 결과로 미루어 볼 때 어린잎채소 는 미생물 안전성면에서는 크게 우려할 수준은 아니지만 어린잎채소의 미생물오염을 사전 예방하는 차원에서 농업 현장에서 쉽게 실천할 수 있는 위생관리 기술 개발과 보급이 필요하다고 판단된다.
총호기성균, 대장균군, Escherichia coli, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, Bacillus cereus를 대상으로 충청남도 청양의 맥문동 재배 농가 3곳의 미생물 오염도 조사하였다. 그결과 E. coli O157:H7, L. monocytogenes, Salmonella spp. 는 전혀 검출되지 않았으며, S. aureus는 작업자가 착용한 장갑의 일부에서만 정성적으로 검출되었다. 수확한 맥문동과 접촉가능성이 있는 주변환경(토양, 수확기, 수확용기, 세척기, 세척수, 채반 등)의 미생물 오염도가 전반적으로 낮은 것으로 조사되었는데, 다만 일부 세척기에서 대장균군이 4.35 log CFU/100 cm² 검출되어 위생관리에 유의할 필요가 있는 것으로 나타났다. 맥문동은 수확 이후에 세척과정과 건조 과정을 거치면서 미생물 오염도(총호기성균, 대장균군, B. cereus)가 감소하는 것으로 나타났다.
위생적인 수확후처리를 통하여 안전한 농산물 생산을 유도하기 위하여 영양부추를 대상으로 수확후 처리시설 모델을 개발하였으며 개발된 수확후 처리시설 설치와 위생교육이 미생물 안전에 미치는 효과를 검증하고자 본 연구를 수행하였다. 이를 위하여 양주지역 영양부추 생산 농가의 수확 후 처리시설 환경과 영양부추에서 위생지표세균(일반세균수, 대장균군, E. coli)과 병원성미생물(Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus)을 조사하였다. 그 결과, 빗, 칼, 도마 등 수확후 처리시설에서 사용하는 작업도구의 일반세균수 오염수준은 수확후 처리시설 설치농가(A, B)에서 수확후 처리시설 비설치농가(C) 보다 1.44~2.33 log CFU / 100cm² 정도 낮았다. 특히 도마의 경우 A농가에서 1.00 log CFU / 100cm²이하, B 농가에서 2.23 logCFU / 100cm²인데 반해 C 농가에서는 6.03 log CFU / 100cm²로 농가간의 위생 상태에 따라 B. cereus의 오염수준이 차이가 크게 나타났다. 또한 지하수에 침지 한 영양부추에서 침지 전 보다 대장균군이 0.57~1.89 log CFU/g이 증가하였다. E. coli는 영양부추, 침지한 후 지하수, 토양에서 검출되었으며, E. coli O157:H7, Salmonella spp., L. monocytogenes는 검출되지 않았다. 따라서 본 연구의 결과를 통하여 소규모 수확 후 처리시설 설치와 위생교육을 통하여 농가 내 수확후처리 환경의 위생을 개선하는데 효과적이라 판단된다. 이와 더불어 유해미생물에 의한 식중독사고를 사전에 예방하기 위해서는 수확 후에 오염된 유해미생물을 저감화 할 수 있는 세척, 소독 기술의 개발과 도입이 필요할 것으로 사료된다.
본 연구는 미나리 수확 후 처리환경의 미생물학적 위해 요소를 조사하기 위해 4개 지역의 미나리 재배농가 9곳을 선정하였다. 미나리 재배농가로부터 다양한 시료를 채취 하여 위생지표세균과 병원성 미생물(Escherichia coli O157: H7, Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus)에 대한 오염도를 조사하였다. 먼저, 9개 농가의 재배환경의 미생물 오염도를 분석한 결과 총 호기성 세균과 대장균군이 각각 0~7.00, 0~4.25 log CFU/g, mL, or 100 cm2 수준으로 검출되었다. 대장균(E. coli)은 몇몇 농가의 토양, 관개용수, 세척수 및 작업자의 손에서 양성 반응을 확인하였으며, 양성반응이 관찰된 농가의 경우 작물인 미나리에서도 양성반응을 보였다. 병원성 미생물 중 B. cereus는 토양에서 가장 많이 검출되었으며, 한 농가의 미나리를 제외한 모든 농가의 세척 후 미나리에서 평균 1.2 log CFU/g수준으로 검출되었다. 황색포도상구균은 세척 후 미나리에서 한 건 정성적으로 검출되었으며, 이외에 다른 병원성 미생물은 관찰되지 않았다. 미나리의 경우 손질 및 세척 후에도 오염도가 유사하거나 오히려 다소 증가하는 경향을 보였다. 이상의 결과 미나리 생산농가의 수확 후 처리 시설 및 작업자에 의해 미생물의 교차 오염 가능성이 있으므로 이에 대한 위생관리를 철저히 해야 한다. 또한, 안전성이 확보된 미나리 생산을 위해서는 GAP와 같은 관리제도의 적용이 필요하다.
본 연구는 국내산 곶감의 미생물 및 aflatoxin에 대한 안전성을 평가하여 곶감의 안전관리의 기초자료로 활용하고자 수행하였다. 본 연구를 위하여 반건시 34농가, 건시 61 농가, 감말랭이 10 농가에서 수집하여 수분활성도와 당도, 위생지표세균 (일반세균수, 대장균군, E. coli)과 병원성미생물(Escherichia coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus), aflatoxin을 조사하였다. 감말랭이, 건시, 반건시의 수분활 성도는 각각 0.81, 0.86, 0.91 였으며 당도는 감말랭이 54.9%, 건시 49.5%, 반건시 40.5%로 당도와 수분활성도는 반비례 하였다. 곶감의 일반세균수는 감말랭이 3.93 ± 0.96 log CFU/g, 건시 2.12 ± 0.93 log CFU/g, 반건시 1.50 ± 1.08 log CFU/g로 감말랭이의 오염도가 가장 높았다. 또한 S. aureus는 감말랭이 40.0%, 건시 29.5%, 반건시 23.5%의 시료에서 검출되었고, E. coli는 건시 6.6%, 반건시 2.9% 의 시료에서 검출되었다. B. cereus는 건시 39.3%, 반건시 20.6%의 시료에서 검출되었고 검출 수준은 0.7~2.3 log CFU/ g이었다. Aflatoxin의 경우는 ELISA법으로 분석했을 때 감 말랭이, 건시, 반건시에서 각각 30%, 4.9%, 2.9%가 검출 되었고 검출농도는 1.0~1.1 ppb 이었다. ELISA법에서 양 성시료를 대상으로 UPLC로 재분석한 결과 aflatoxin은 검 출되지 않았다. 본 연구의 결과로 미루어 볼 때 안전한 곶 감 생산을 위한 위생관리기술의 개발과 곶감생산 농가의 지속적인 위생교육이 필요하다고 사료된다.
본 연구는 polyvinyl chlroride (PVC)와 stainless steel 표면에서 B. cereus의 온·습도에 따른 생존율을 조사하고, B. cereus이 오염된 작업대 표면에서 상추로의 교차오염도 조사를 통하여 B. cereus에 오염된 작업대가 상추의 미생물 학적 안전성에 미치는 영향을 평가하고자 수행하였다. 작업대 재질별 B. cereus의 생존은 온도 20oC, 30oC, 습도 43%, 69%, 100%에서 각각 노출 시켰을 때, 습도 43%, 69% 조 건에서 24시간 이내에 전체 세포수는 약 3.53~4.00 log CFU/ coupon이 감소한데 반해 포자수는 약 3.00 log CFU/coupon 수준을 일정하게 유지하였다. 한편 온도 30oC, 상대습도 100%에서는 노출 12시간 후에 포자수가 2.29~2.59 log CFU/ coupon정도 증가하였다. 유기물이 작업대 표면에 존재 시, B. cereus의 감소 속도가 느렸다. B. cereus에 오염된 작업 대에 상추를 접촉시키고 상추의 오염도를 조사한 결과, 상 추 표면에 수분이 존재할 때 B. cereus오염된 작업대 표면에서 B. cereus의 이동수준이 상추에 수분이 없을 때 보다 10배 이상 증가하는 것으로 나타났다. 따라서 B. cereus에 오염된 작업대는 상추의 안전성에 직접적인 영향을 미칠 수 있어 작업 후에 세척, 소독을 통하여 작업대를 위생적으로 관리하는 것이 필요하다.
본 연구는 생산단계 토마토를 국내 5개 지역 소재의 18개 농가에서 총 90점의 시료를 수집하여 위생지표세균 및 유해미생물의 오염도를 분석하였다. 또한 주산지 1개 지역의 4개 농가를 대상으로 시기별(3, 4, 5, 6월) 위생지표 세균 및 유해미생물의 오염도 변화를 조사하였다. 생산단계 토마토의 위생지표세균 중 일반호기성세균은 최소 0.48 - 최대 6.15 Log CFU/g 범위로 나타났고, Coliforms는 최소 ND - 최대 3.37 Log CFU/g 범위로 나타났다. B. cereus의 경우에는 90개 시료 중 6개의 시료에서 검출되었고 모두 1 LogCFU/g 이하인 것으로 나타났다. 시기별로는 3월에 일반호기성세균, Coliforms, B. cereus가 평균적으로 각각 2.70, 0.56, 1.58 Log CFU/g으로 나타났고, 이들 모두 4, 5, 6월로 시기가 지남에 따라 오염도가 통계적으로 유의하게 낮아지는 것으로 나타났다. 본 연구에서 수행한 S. aureus, E. coli, E. coli O157:H7, Salmonella spp., L. monocytogenes 오염도 조사에서는 이들 모두 불검출로 나타났다. 본 연구는 국내 생산단계 토마토의 위생지표세균 및 유해미생물 오염도를 조사하고 시기별 오염도 변화 양상을 관찰하여, 농식품 안전성 확보 및 국내 토마토의 미생물위해성 평가(Microbiological Risk Assessment)의 기초자료로 활용 될 수 있을 것이다.
In order to achieve the optimized pest control, correct estimation of pest densities is a prerequisite to monitor pest damage and to provide efficient pest management plans. Parameters regarding diffusion (e.g., diffusion constant) and population size (e.g., growth rate) were estimated by using diffusion equation. The time series dispersal data of Whiteflies collected in greenhouse were used for modeling. Cross-correlation analysis was conducted to reveal the range and direction of pest population invasion. Sampling theory was further investigated regarding estimation of densities, and population dynamics of Whiteflies were discussed in two dimensions.
We analyzed the chirp sound and behavior of Teleogryllus emma with observation system, which was consisted of computer, ccd-camera and microphone. Computational methods of wavelet transformation and Self-Organizing Maps (SOM) were utilized to characterized the chirp sound of insect species for automatic counting in this study. Wavelets were initially applied to feature extraction of the chirp sound. Wavelet coefficients were accordingly calculated based on the basis function (e.g., Morlet). The obtained coefficients were subsequently provided to count number of chirps in each song. Sound structure of insect specimens consisted with long chirp and short chirp and the patterns of song were grouped by frequency of long chirp and short chirp. The song patterns of insect specimens were divided by Self-Organizing Map (SOM) that was used number of chirp as input data. Application of computational methods to automatic detection of chirp sound was further discussed for obtaining objective assessment in behavior science.
In 2005, the invasion of Bemisia tabaci Q-type was detected at first in the southern part of Korea. And then the pest has been spread rapidly over the nation, and it has attacked various fruit vegetables including yellow melon, tomato, sweet pepper, and so on. During three years since 2005, many kinds of predators and parasitoids have been applied to establish the biological control program to solve the Bemisia tabaci problem.
Parasitoids were regarded as promising natural enemies, at first. However, Encarsia formosa famous for the parasitoid of greenhouse whitefly is not so effective to control Bemisia tabaci. Although other parasitoids, Eretmocerus eremicus and Eretmocerus mundus, were introduced successively, application results of them were not satisfactory. Owing to the difficulties in settling the parasitoids on crops, total cost of biological control program tends to be increased by the iterative periodic release.
On the other hand, it was great that the application result of predatory mite, Amblyseius swirskii. Laboratory experiments show that the mite can consume large amount of Bemisia tabaci eggs. In addition, the mite can survive and reproduce without prey. Plant-associated materials such as pollens are sufficient for the development and reproduction of the mite. Field observations reveal that just onetime release after the first blossom is enough for the preventive treatment. The mite is especially so effective on the pollen-rich crops such as sweet pepper. Flowers and leaves are infested by the mite in a brief instant. While flower-dwelling mites take a role of natural enemy of thrips, leaf-dwelling mites effectively suppress the density of Bemisia tabaci.
Anyway, curative treatment of the mite is not desirable, for it usually do not feed on other stage of Bemisia tabaci except fresh eggs within one or two days. It is also unfortunate that the mite seldom moves on tomato. It is even reluctant to go out from distribution box. When we put some mites on a leaf of tomato, they usually aggregated in a point. Sticky trichomes and semiochemicals might be engaged in such phenomena. In addition, the mite seems to be suffered by high temperature. So the density of Bemisia tabaci could be increased continuously in summer season, regardless of the presence of the predatory mite.
In recent, we keep an eye on another predatory bug, Nesidiocoris tenuis, as a biological control agent against whiteflies on tomato. Nesidiocoris tenuis is an active and aggressive natural enemy. It likes to eat whitefly eggs, larvae and pupae. It can also feeds on aphids and mites. Once established in tomato greenhouse, whiteflies were overwhelmed by the predator. In our observation, Bemisia tabaci could be successfully controlled by the predator without any pesticide application, during about a half year from early spring to mid summer.
However, we should take precaution against the side effects of Nesidiocoris tenuis, which is ironically known as a serious pest on tomato. From time to time, growing points of tomato could be disappeared by the damage of Nesidiocoris tenuis. So we need to control the density of the bug under the economic threshold. Owing to the bug, the production of sesame could be decreased remarkably. To avoid side effects, Nesidiocoris tenuis should be handled by the experts who know well about the ecological characteristics of it.
In the case of yellow melon, biological control of any pest is not easy task. Without pesticide, yellow melon is frequently damaged destructively by aphids, mites and whiteflies. However, the temperature in greenhouse is too high to release and augment ordinary natural enemies. We just regard Nesidiocoris tenuis as a promising natural enemy of whiteflies on yellow melon, because it is resistant to high temperature.
Many trials and errors might be required to establish reliable strategy to solve the problem caused by Bemisia tabaci. And it should be continued that the efforts for the integrated pest management based on biological control.
Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseidae) is well known as an effective natural enemy of two-spotted spider mite, Tetrnychus urticae Koch (Acari: Tetranychidae). However, successful biological control usually requires adequate management of temperature. While P. persimilis did suppress T. urticae at moderate condition (20~25oC) in a week or so, the density of P. persimilis was barely increased at cold condition (5~10oC) in three weeks or so. The problem is that winter temperature is too cold for the development and reproduction of P. persimilis in greenhouse for forcing strawberry. Night temperatures in greenhouse were even mostly lower than 6oC. So, winter application of P. persimilis against T. urticae is useless. To avoid damage from T. urticae in early spring season, it was better that the release amount of P. persimilis was double at middle- and late-October, instead of early-November to next early-February. If necessary, the double releasing of P. persimilis might be good for control of T. urticae at middle- and late-February.