검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 476

        61.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Foot-and-mouth disease (FMD) is a highly contagious vesicular disease that affects cloven-hoofed animals, causing substantial economic losses to the livestock industry. The causative FMD virus (FMDV) comprises four structural proteins (VP1, VP2, VP3, and VP4) and several non-structural proteins. Among the capsid proteins, VP4 is the most conserved, making it an attractive target as a diagnostic and vaccine antigen, regardless of FMDV serotype. In this study, we attempted to express the VP4 protein N-terminally fused to a glutathione S-transferase (GST) tag in Escherichia coli. Whereas VP0 and VP2 proteins were expressed in the soluble fraction, we failed to detect VP4, even in the insoluble fraction. To investigate the effect of VP4 C-terminal amino acid residues on protein expression, we constructed three VP4 mutants fused to GST, among which the mutant in which the C-terminal 15 amino acid residues had been deleted showed the highest level of protein expression. Furthermore, protein expression was observed even in the mutant in which three amino acid residues (DKK) had been fused to the C terminus. However, unlike the other two mutants, the wild-type VP4 mutant was poorly expressed, thereby indicating that the C-terminal amino acid residues could play a pivotal role in determining expression of the VP4 protein in E. coli.
        4,000원
        62.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We observed the symbiotic star AG Dra for a total of 61 nights between April 2004 and December 2021 using the 1.8-m telescope and the high-resolution Echelle spectrograph BOES at the Bohyunsan Optical Astronomy Observatory and obtained 355 frames of spectroscopic data to investigate the variations in its spectral lines. Overnight short-term and long-term changes in prominent emission lines are examined. No short-term changes are found in the line profiles. However, the peak intensity of the Hα emission line exhibits very small variation. In the long-term period, many emission lines including He I λ5875, λ6678, λ7065 and Fe II λ5018 are found to vary reflecting the symbiotic outburst activities. It is noted that He II λ4686 and Raman-scattered O VI λ6830, λ7088 are exceptions, where no significant variations are discernible. One of the noticeable lines is the λ5018 line. Its appearance and disappearance pattern are different from other emission lines, and the line is found to appear in outburst states. The Hα and Hβ lines remain very similar in our spectroscopic monitoring campaign.
        5,400원
        63.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, not only traditional statistical techniques but also machine learning algorithms have been used to make more accurate bankruptcy predictions. But the insolvency rate of companies dealing with financial institutions is very low, resulting in a data imbalance problem. In particular, since data imbalance negatively affects the performance of artificial intelligence models, it is necessary to first perform the data imbalance process. In additional, as artificial intelligence algorithms are advanced for precise decision-making, regulatory pressure related to securing transparency of Artificial Intelligence models is gradually increasing, such as mandating the installation of explanation functions for Artificial Intelligence models. Therefore, this study aims to present guidelines for eXplainable Artificial Intelligence-based corporate bankruptcy prediction methodology applying SMOTE techniques and LIME algorithms to solve a data imbalance problem and model transparency problem in predicting corporate bankruptcy. The implications of this study are as follows. First, it was confirmed that SMOTE can effectively solve the data imbalance issue, a problem that can be easily overlooked in predicting corporate bankruptcy. Second, through the LIME algorithm, the basis for predicting bankruptcy of the machine learning model was visualized, and derive improvement priorities of financial variables that increase the possibility of bankruptcy of companies. Third, the scope of application of the algorithm in future research was expanded by confirming the possibility of using SMOTE and LIME through case application.
        4,300원
        64.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Natural environmental resources are considered a prospective source of microorganisms capable of producing biocatalysts with great potential in industrial areas. Arable soil fertilized with peat moss is a habitat for various microorganisms. The present research focused on the isolation and identification of hydrolase-producing bacteria that thrive at a broad temperature range. In this study, a total of 33 strains were isolated from arable soil fertilized with peat moss (Silla Garden in Busan, South Korea). The isolated bacteria were mesophiles and thermophiles with a wide temperature range. Taxonomic identification showed that the isolated strains belonged to 2 phyla, 5 families, 10 genera, and 24 species. Subsequently, the isolated strains were screened for hydrolase (amylase, lipase, and protease) activity. All isolates possessed activity of at least one enzyme and six bacterial isolates produced combined extracellular enzymes. Diversity of soil bacteria species in the present study suggest the potential of soil bacteria in the various industrial applications.
        4,000원
        65.
        2022.05 구독 인증기관·개인회원 무료
        Once a radioactive material is released from the nuclear power plant (NPP) by accident, it is necessary to understand the behavior of radioactive plume to protect residents adequately. For this, it is essential to measure the radiation dose rate around NPPs at important locations. Our previous study developed a movable radiation detector that can be installed quickly in an accident to measure gamma dose rate in areas where environmental radiation monitoring system is not installed. The data measured by the detector are transmitted to the server in real-time through LoRA wireless communications. There are two methods to use LoRA communications; one is self-network, and the other is the network provided by the mobile carrier. A signal receiver, called a gateway, should be equipped near the installation location of radiation detectors to use a self-network without using the mobile carrier’s system. In other words, the movable radiation detectors we made can function if there should be any gateway near them. The distance capable of communication between gateway and detector is about 8 km in an open area without significant obstacles. Korea has many significant obstacles, such as mountains around most NPPs. Thus, the gateways could be installed in the proper position before the accident to operate the movable radiation detectors without problems. If the gateway is located at a high position like a mountain top, it could cover a wide area. In this study, the elevation database in the area around the NPPs was collected and analyzed to determine where gateways should be installed. The analysis range is limited in the urgent protective action planning zone. The optimization was also performed to minimize the number of gateways.
        66.
        2022.05 구독 인증기관·개인회원 무료
        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Thus, evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, safety assessments conducted in Sweden and UK are studied, and the factors required to be considered for appropriate safety assessment of cellulose is analyzed. SKB (Sweden) conducted safety assessment of cellulose degradation as a part of long-term safety assessment of SFR. SKB determined that ISA would impact sorption of trivalent and tetravalent radionuclides (Eu, Am, Th, Np, Pa, Pu, U, Tc, Zr and Nb) at concentration higher than 10−4–10−3 M, and impact sorption of divalent radionuclides (Ni, Co, Fe, Be and Pb) at concentration higher than 10−2 M. Then, SKB conservatively set the upper limit of ISA concentration to be 10−4 M and conducted cellulose degradation evaluation on each waste package type, considering the expected disposal environment of SFR. Based on the calculated results, some of the waste packages showed concentration of ISA to be higher than 10−4 M, so SKB conservatively developed waste acceptance criteria to prevent ISA being produced to an extent of affecting the safety of the repository. SKB conducted safety assessment only for the repositories with pH above 12.5 and excluded 1BLA from the safety assessment as the expected pH of 1BLA is around 12, which is insufficient for cellulose to degrade. However, SKB set disposal limit for 1BLA as well, to minimize potential impact in future. Serco (UK) conducted safety assessment of cellulose degradation for the conceptual repository, which is a concrete vault with cementitious backfill. Serco estimated that the pH of repository would maintain around 12.4. Serco conservatively assumed that the pH would be sufficient for cellulose degradation to occur partially, and suggested application of appropriate degradation ratio for safety assessment of cellulose degradation. To conduct appropriate safety assessment of cellulose degradation, an appropriate ISA concentration limit based on radionuclide inventory list, and an appropriate cellulose degradation ratio based on the pH of disposal environment should be determined. As for guidance, below pH 12.5, cellulose degradation is not expected, and between pH 12.5–13, partial cellulose degradation is expected. In future, this study could be used as fundamental data to evaluate safety of the repository.
        67.
        2022.05 구독 인증기관·개인회원 무료
        Near-surface disposal facility is more susceptible to intrusion than underground repository, resulting in more possible pathways for contaminant release. Alike human intrusion, animals (e.g. Ants, Moles, etc.) could intrude into the disposal site to excavate burrows, which could cause direct release of contaminants to biosphere. In this paper, animal intrusion is demonstrated using GoldSim’s commercial contaminant transport module and impact on the integrity of the near-surface disposal facility is evaluated in terms of fractional release rate of the contaminants. In this study, the near-surface disposal facility is modelled with a single concrete vault to contain radionuclide according to LLW concentration limit stated in NSSC notice No.2020-6. The release of contaminants is modelled to occur directly after the institutional control period, and the contaminants are mostly transported from the concrete vault to cover layers via diffusion. To produce mathematical model of the release of the contaminants due to animal intrusion, firstly, the fraction of burrow volume for each cover layer is calculated separately for each animal species, based on their maximum possible intrusion depth. In this study, fractions of burrow volume for ants and moles are calculated based on their maximum possible intrusion depths, where for ants is 2–3 m, and for moles is 0.1–0.135 m. Then, assuming that the contaminants are distributed homogeneously throughout each cover layers by diffusion, fraction of contaminants transported into the uppermost layer via excavation of the burrow is calculated for each layer based on burrow volume, and fraction of contaminants removed from the uppermost layer to the layers below via collapse of the burrow is also calculated based on the burrow volume. Lastly, the net transportation of contaminants into and out of the burrow via excavation and collapse, respectively, is calculated and demonstrated using direct transfer rate function of the GoldSim. Based on the simulated result, the maximum mass flux is too minor to cause a meaningful impact on the safety. The peak mass flux of the most sensitive radionuclide, I-129, is witnessed at around year 1,470, with a flux value of 5.36×10−6 g·yr−1. This minor release of the contaminants could be due to cover layers being much thicker than the maximum possible intrusion depth of the animals, preventing the animal intrusion into the deeper layers of higher radionuclide concentration. In future, this study can be used to provide a guidance and fundamental data for scenario development and safety evaluation of the near-surface disposal facility.
        68.
        2022.05 구독 인증기관·개인회원 무료
        Recently, concern regarding disposal of cellulosic material is growing as cellulose is known to produce complexing agent, isosaccharinic acid (ISA), upon degradation. ISA could enhance mobility of some radionuclides, thus increasing the amount of radionuclide released into the environment. Evaluation on the possible impact of the cellulose degradation would be an important aspect in safety evaluation. In this paper, the maximum safe disposal amount cellulose is evaluated considering the disposal environment of silos of 1st phase disposal facility. The key factor governing the impact of cellulose degradation is pH of disposal environment, as cellulose is known to degrade partially at pH above 12.5, and completely at pH above 13. Thus, disposal environment should be analyzed as to determine the extent of degradation. As silos are constructed with large amount of cement, porewater within concrete walls would be of very high pH. However, for high pH porewater to be released into the pores of crushed rock, which is filling up the silos, lower pH groundwater (commonly pH 7) should flow into the silos through the concrete walls. This causes dilution of the high pH concrete porewater, resulting in a lower pH as the silos are filled, reaching to expected pH of 11.8–12.3, which is below cellulose degradation condition. Thus, cellulose degradation is not expected, but to quantitatively evaluate safe disposal amount of cellulose, partial degradation is assumed. Upon literature review, the most conservative ISA concentration, enhancing radionuclide mobility, is determined to be 1.0×10−4 M and to reach this concentration, cellulose mass equivalent to 6wt% of cement of the repository, is required to be degraded. However, this ratio is derived based on complete degradation of cellulose into ISA, so for partial degradation, degradation ratio and yield ratio of ISA should be considered. Commonly, cellulosic material (e.g. cotton, paper, etc.) has degree of polymerization (DP) between 1,000–2,000, and with this DP, degradation ratio is estimated to be about 10%. Furthermore, yield ratio of ISA is known to be 80%. Considering all these aspects, about 1.79×107 kg of cellulose could be disposed, which if converted into number of drums, considering cellulose content of dry active waste, more than 100,000 drums (200 L) could be disposed with negligible impact on safety. Based on the result, negligible impact of cellulose degradation is expected for safety of 1st phase disposal facility. In future, this study could be used as fundamental data for revising waste acceptance criteria.
        72.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        우리나라 정원의 식물 이용 현황을 알아보고자 전국 36개 정원을 대상으로 정원식물을 조사하였다. 정원은 6가지 유형 으로 구분하였다. 그 결과, 36개소 정원에는 정원식물 712종 류가 식재되고 있었다. 교목, 관목, 초본의 비중은 평균 1:2:7 이었다. 개별 정원(10×10㎡)에서 교목은 평균 2.5종으로 12.6%, 관목은 4.1종 20.7%, 초본은 13.2종 66.7%를 차지했다. 식재 빈도 상위 5%에 40여 종이 포함되었으며, 맥문동, 일본조팝나 무, 수국, 회양목, 단풍나무, 옥잠화, 에키네시아, 산철쭉이 대 표적이었다. 양지형 정원에는 관목이 상대적으로 적고 초본이 많았으며 다른 유형보다 20~40% 이상 다양했다. 그늘형은 초 본보다 교목이 많았으며, 건조형 및 습지형과 마찬가지로 식 재 다양성이 20% 감소했다. 옥상정원의 도시형 정원은 초본 이 전체의 80~90%를 차지하고, 해안형 정원에는 목본과 초본 이 1:1로 목본 중심의 식재 특성을 보였다. 결과적으로 정원 유형에 따라 식재 다양성과 구성 비율이 명확한 차이를 나타 냈다.
        4,000원
        73.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Despite having a low electrical conductivity, graphene oxide (GO) is used as an anode material in lithium-ion batteries (LIBs) owing its good processability in large quantities. GO is reduced by chemical or thermal treatments to enhance its electrical conductivity. In this study, high-performance GO anodes with polydopamine (PDA) and polyethylenimine (PEI) as binders were fabricated. Gamma (γ)-ray irradiation was applied to the GO–PDA–PEI hybrid sheets to covalently cross-link the GO sheets and binders with an amide bond. The covalent crosslinking was confirmed by Fourier-transform infrared spectroscopy analysis. Further, X-ray photoelectron spectroscopy results showed that γ-ray irradiation produced a reduced GO sheet, which resulted in an increase in the electrical conductivity by 30%. By characterizing the electrochemical properties, we found that the γ-ray irradiation facilitates the stability and increases the charge/discharge capacity by crosslinking GO and PDA–PEI binders and reducing the GO sheets.
        4,000원
        1 2 3 4 5