검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 278

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        곤충호텔은 곤충이 서식할 수 있도록 인위적으로 만든 구조 물로서 정원이나 텃밭 등 다양한 곳에서 활용되고 있다. 하지만 식생유형, 재료, 설치 방식 등에 따른 곤충 유입 효과에 대한 검증은 부족하며, 국가 또는 지역에 따른 곤충의 종류와 생육환 경이 다름에도 불구하고 곤충호텔에 대한 국내 연구는 전무한 실정이다. 따라서 본 연구에서는 국립수목원을 대상으로 구체적 인 식생유형 및 재료에 따른 유입 곤충 특성을 확인하고, 국내 실정에 맞는 효과적인 곤충호텔 설치 및 관리방안에 대한 기준 을 제시하고자 하였다. 조사구는 세 가지 식생유형(초지, 침엽수 림, 활엽수림)으로 구분하였으며, 각 식생의 조사구에 두 가지 재료(참나무, 잣나무)를 활용한 곤충호텔을 설치하였다. 조사는 2년동안(2022~2023) 진행되었으며, 매년 4~9월까지 주 1회 씩(총 48회) 곤충호텔의 유입 곤충을 직접 채집하였다. 곤충호 텔에서 채집된 곤충은 총 9목 46과 129종 3,057개체로, 2022 년에는 7목 34과 85종 1,750개체, 2023년에는 8목 35과 77종 1,307개체가 출현하였다. 연도별로 비교하면 1차년도에 유입 된 곤충의 개체수가 2차년도 보다 약 1.3배 많았고, 재료의 부식 에 따른 곤충의 구성도 달라졌다. 식생유형에 따라 구분하면 기간에 상관없이 활엽수림에서 유입 곤충이 가장 많았고, 침엽 수림에서 가장 적었다. 또한 재료에 따른 구분에서는 참나무가 잣나무보다 유입 곤충이 많았다. 참나무의 경우 유입 곤충의 연도별 차이가 적은 반면, 잣나무는 1년차에 비해 2년차에 약 2.3배 줄었다. 상관분석과 계층적 군집분석을 통한 곤충의 유입 특성은 식생유형보다는 재료의 영향이 큰 것으로 확인되었고, 식생유형만 비교했을 경우 초지에 비해 활엽수림과 침엽수림의 유사성이 높았다. 결론적으로 생물 다양성 증진을 목적으로 곤 충호텔을 설치하고자 한다면 초지나 활엽수림에 참나무 재료를 사용하는 것이 유리하며, 잣나무 재료를 이용한다면 1년 주기로 재료 교체가 필요할 것으로 판단된다. 하지만 특정 재료를 선호 하는 곤충의 기주특이성이 확인되었기 때문에 다양한 종류의 재료를 같이 사용하는 것도 하나의 방법이라고 사료된다. 향후 이를 기반으로 전시원에서 실질적으로 활용할 수 있는 곤충호텔 모델 개발로 확대해 나갈 예정이다.
        4,300원
        2.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국립수목원 전시원의 지속가능하고 친환경적인 관리를 위하 여 유기물 멀칭재 처리에 대한 잡초 억제 효과를 조사하였다. 대표적 잡초인 쑥군락과 바랭이군락을 대상으로 고정방형구 (1×1㎡)를 3반복 설치하였다. 처리구의 유기물 멀칭재는 5가지 재료로 활엽수 우드칩, 침엽수 바크, 갈참나무 낙엽, 메타세쿼이 아 낙엽, 칠엽수 과피를 사용하였다. 멀칭재 중에서 갈참나무 낙엽, 활엽수 우드칩, 칠엽수 과피가 비교적 잡초 억제 효과가 높은 것으로 나타났다. 갈참나무 낙엽은 지중 온도를 낮게 유지 하는 효과가 상대적으로 좋았기 때문에 토양의 보습 효과가 뛰 어날 것으로 판단된다. 유기물 멀칭재 처리는 일년생식물의 발 생은 억제하고, 지중식물 및 반지중식물의 생육에 도움을 주는 효과가 있었다. 멀칭재의 무게보다 재료에 의한 빛 차단 면적이 잡초를 억제하는 주된 요인이었다. 본 연구 결과는 국립수목원 전시원에서 발생하는 부산물을 활용한 친환경적 관리 방안 수립 에 활용될 것이며, 향후 잡초의 발생 시기에 따른 멀칭 시기 및 유기물 멀칭재의 유지 관리에 대한 추가적인 연구가 필요하다.
        4,300원
        3.
        2024.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hydride analysis is required to assess the mechanical integrity of spent nuclear fuel cladding. Image segmentation, which is a hydride analysis method, is a technique that can analyze the orientation and distribution of hydrides in cladding images of spent nuclear fuels. However, the segmentation results varied according to the image preprocessing. Inaccurate segmentation results can make hydride difficult to analyze. This study aims to analyze the segmentation performance of the Otsu algorithm according to the morphological operations of cladding images. Morphological operations were applied to four different cladding images, and segmentation performance was quantitatively compared using a histogram, betweenclass variance, and radial hydride fraction. As a result, this study found that morphological operations can induce errors in cladding images and that appropriate combinations of morphological operations can maximize segmentation performance. This study emphasizes the importance of image preprocessing methods, suggesting that they can enhance the accuracy of hydride analysis. These findings are expected to contribute to the advancements in integrity assessment of spent nuclear fuel cladding.
        4,200원
        4.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Yeongsan River is a prominent inland waterway, alongside the Han River, Nakdong River, and Geum River in South Korea. Numerous bacterial strains were isolated from the Yeongsan River basin for a comprehensive investigation into indigenous prokaryotic species conducted between 2020 and 2023. These bacterial strains were identified using 16S rRNA gene sequencing, wherein 45 bacterial strains shared >98.7% sequence similarities with bacterial species not recorded in Korea thus far. Therefore, this study aimed to catalogue aforementioned unrecorded species and characterize them contingent upon their Gram nature, colony and cell morphologies, biochemical properties, and phylogenetic positions. These bacterial species were determined to be phylogenetically diverse. They were categorized into nine classes, 18 orders, and 25 families. These previously unrecorded species were classified into the following genera and classes: Chitinophaga (class Chitinophagia); Flavobacterium (class Flavobacteriia); Rhodopseudomonas, Gemmobacter, Paracoccus, Azospirillum, Sphingomonas, Novosphingobium, Sphingorhabdus, and Erythrobacter (class Alphaproteobacteria); Bordetella, Pararobbsia, Polynucleobacter, Rhodoferax, Aquabacterium, Malikia, Comamonas, Ideonella, Paucibacter, Undibacterium, Cupriavidus, and Thauera (class Betaproteobacteria); Pectobacterium, Arenimonas, Lysobacter, and Luteimonas (class Gammaproteobacteria); Luteolibacter (class Verrucomicrobiia); Mycolicibacterium, Angustibacter, Ornithinibacter, Janibacter, Schumannella, Aurantimicrobium, Luedemannella, Nocardioides, and Propionicimonas (class Actinomycetes); Geothrix (class Holophagae); and Lactococcus (class Bacilli).
        5,100원
        5.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국립원예특작과학원에서는 밝은 화색과 안정적인 화형의 생 육이 우수한 빨간색 스탠다드 장미 품종을 육성하기 위해 진한 적색 스탠다드 장미 품종 ‘엔드리스러브(Endless Love)’를 모 본으로, 꽃잎수가 많고 안정적으로 가시가 적은 밝은 노란색 ‘페니레인(Penny Lane)’ 품종을 부본으로 인공교배하였다. 37 개의 교배실생을 양성해 1, 2, 3차에 걸친 특성검정 및 현장실증 을 통해 꽃이 크고 화형이 안정적이며, 재배안정성 및 생산성, 절화특성이 우수한 ‘원교 D1-390’을 최종 선발하였다. 2023년 ‘루비레드(Ruby Red)’로 명명하여 국립종자원에 품종보호출원·등록되었다. ‘루비레드’ 품종은 밝은 적색(R53C)을 가졌으 며, 꽃잎수가 32.8매, 화폭과 화고는 각각 10.9, 5.9cm로 대조 품종보다 크다. 절화장은 평균 71.7cm, 절화수명은 약 16.7일, 수량은 연간 168대/m2로 대조품종인 ‘레드스퀘어(Red Square)’ 대비 절화장이 길고 절화수명도 2배 이상 길며, 수확량도 1.4배 우수하다. 2023년 국내 육성 장미 품종 서울식물원 관람객 대상 공동평가회에서 스탠다드 장미 중 우수한 평가를 받았으며, 현 장 실증 결과 농가별로 균일하고 우수한 수량과 절화품질을 보 였다. 절화용 장미 ‘루비레드’ 품종은 밝은 적색과 우수한 화형 을 가지는 품종으로 해외 대체 품종으로 국내에서 많이 재배될 것으로 기대된다.
        4,000원
        6.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Unlike companion cats raised at home, feral cats are more likely to be infected with parasites. Feral cats can transmit parasites not only to other cats but also to pets and people. This study was conducted to investigate prevalence intestinal parasites prevalence through the fecal examination of feral cats in Gunsan City. After making a suspension in Sheather's Sucrose solution, the feces were mixed and centrifuged, and then examined under a microscope. The results were revealed mostly unsporulated oocysts and sporulated oocysts of coccidia, followed by pinworm's eggs, which showed a relatively high infection rate. Scabies and mites were also found in the feces. Due to the behavioral characteristics of cats, they tend to remove the foreign objects from their fur through grooming, which is why a lot of hairs were observed in the feces, and it is thought that this is why scabies and mites were also found in the fecal examination results. The results of this study confirm that feral cats are exposed to those parasites. It is also thought that consideration should be given to expanding the TNVR (trap-neuter-vaccinate-release) program, which can reduce the number of feral cats.
        4,000원
        7.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys (HEAs) have been reported to have better properties than conventional materials; however, they are more expensive due to the high cost of their main components. Therefore, research is needed to reduce manufacturing costs. In this study, CoCrFeMnNi HEAs were prepared using metal injection molding (MIM), which is a powder metallurgy process that involves less material waste than machining process. Although the MIM-processed samples were in the face-centered cubic (FCC) phase, porosity remained after sintering at 1200°C, 1250°C, and 1275°C. In this study, the hot isostatic pressing (HIP) process, which considers both temperature (1150°C) and pressure (150 MPa), was adopted to improve the quality of the MIM samples. Although the hardness of the HIP-treated samples decreased slightly and the Mn composition was significantly reduced, the process effectively eliminated many pores that remained after the 1275°C MIM process. The HIP process can improve the quality of the alloy.
        4,300원
        9.
        2024.04 구독 인증기관·개인회원 무료
        Climate change has led to increased insect pests and pest distribution changes. Traditionally, chemical control using synthetic pesticides has been the main method for pest management, but the emergence of pesticide-resistant pests has become a problem. There is a need to develop new pest control agents to overcome these issues. Entomopathogenic fungi used in pest management have minimal environmental side effects and possess a mechanism of action distinct from that of synthetic pesticides. However, there is a need for the development of technologies to maximize the insecticidal effects of fungi against pests, and expressing and releasing dsRNA within the fungi can preemptively knock out the activation of the insect’s defense system, thereby enhancing the insecticidal effect. Controlling insect defense genes and using entomopathogenic fungi as bio-carriers forms a new pest management strategy. This approach, described as a “microbial insecticide agents development strategy of cassette concept, ” can versatilely modify genes and microbes. It is expected to overcome the limitations of synthetic pesticides.
        10.
        2024.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we introduce a novel TiN/Ag embedded TiO2/FTO resistive random-access memory (RRAM) device. This distinctive device was fabricated using an environmentally sustainable, solution-based thin film manufacturing process. Utilizing the peroxo titanium complex (PTC) method, we successfully incorporated Ag precursors into the device architecture, markedly enhancing its performance. This innovative approach effectively mitigates the random filament formation typically observed in RRAM devices, and leverages the seed effect to guide filament growth. As a result, the device demonstrates switching behavior at substantially reduced voltage and current levels, heralding a new era of low-power RRAM operation. The changes occurring within the insulator depending on Ag contents were confirmed by X-ray photoelectron spectroscopy (XPS) analysis. Additionally, we confirmed the correlation between Ag and oxygen vacancies (Vo). The current-voltage (I-V ) curves obtained suggest that as the Ag content increases there is a change in the operating mechanism, from the space charge limited conduction (SCLC) model to ionic conduction mechanism. We propose a new filament model based on changes in filament configuration and the change in conduction mechanisms. Further, we propose a novel filament model that encapsulates this shift in conduction behavior. This model illustrates how introducing Ag alters the filament configuration within the device, leading to a more efficient and controlled resistive switching process.
        4,200원
        11.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
        4,800원
        12.
        2023.11 구독 인증기관·개인회원 무료
        The radiological characterization of SSCs (Structure, Systems and Components) plays one of the most important role for the decommissioning of KORI Unit-1 during the preparation periods. Generally, a regulatory body and laws relating to the decommissioning focus on the separation and appropriate disposal or storage of radiological waste including ILW (intermediate level waste), LLW (low level waste), VLLW (very low level waste) and CW (clearance waste), aligned with their contamination characteristics. The result of the preliminary radiological characterization of KORI Unit-1 indicated that, apart from neutron activated the RV (reactor vessel), RVI (reactor vessel internals), and BS (biological shielding concrete), the majorities of contamination were sorted to be less than LLW. Radiological contamination can be evaluated into two methods. Due to the difficulties of directly measuring contamination on the interior surfaces of the pipe, called CRUD, the assessment was implemented by modeling method, that is measuring contamination on the exterior surfaces of the pipes and calculating relative factors such as thickness and size. This indirect method may be affected by the surrounding radiation distribution, and only a few gamma nuclides can be measured. Therefore, it has limitation in terms of providing detailed nuclide information. Especially, α and β nuclides can only be estimated roughly by scaling factors, comparing their relative ratios with the existing gamma results. To overcome the limitation of indirect measurement, a destructive sampling method has been employed to assess the contamination of the systems and component. Samples are physically taken some parts of the systems or components and subsequently analyzed in the laboratory to evaluate detailed nuclides and total contamination. For the characterization of KORI Unit-1, we conducted the radiation measurement on the exterior surfaces of components using portable instruments (Eberline E-600 SPA3, Thermo G20-10, Thermo G10, Thermo FH40TG) at BR (boron recycle system) and SP (containment spray system) in primary system. Based on these results, the ProUCL program was employed to determine the destructive sample collection quantities based on statistical approach. The total of 5 and 8 destructive sample quantities were decided by program and successfully collected from the BR and SP systems, respectively. Samples were moved to laboratory and analyzed for the detail nuclide characteristics. The outcomes of this study are expected to serve as valuable information for estimating the types and quantities of radiological waste generated by decommissioning of KORI Unit-1.
        13.
        2023.11 구독 인증기관·개인회원 무료
        Domestic commercial low- and intermediate-level radioactive waste storage containers are manufactured using 1.2 mm thick cold-rolled steel sheets, and the outer surface is coated with a thin layer of primer of 10~36 μm. However, the outer surface of the primer of the container may be damaged due to physical friction, such as acceleration, resonance, and vibration during transportation. As a result, exposed steel surfaces undergo accelerated corrosion, reducing the overall durability of the container. The integrity of storage containers is directly related to the safety of workers. Therefore, the development of storage containers with enhanced durability is necessary. This paper provides an analysis of mechanical properties related to the durability of WC (tungsten carbide)-based coating materials for developing low- and intermediate-level radioactive waste storage containers. Three different WC-based coating specimens with varied composition ratios were prepared using HVOF (high-velocity oxy-fuel) technique. These different specimens (namely WC-85, WC-73, and WC-66) were uniformly deposited on cold-rolled steel surfaces ensuring a constant thickness of 250 μm. In this work, the mechanical properties of the three different WCbased coaitng materials evaluated from the viewpoints of microstructure, hardness, adheision force between substrate and coating material, and wear resistance. The cross-sectional SEM-EDS (Scanning Electron Microscope-Energy Dispersive X-ray Spectroscopy) images revealed that elements W (tungsten), C (carbon), Ni (nickel), and Cr (chromium) were uniformly distributed within the each coating layers which was approximately 250 μm thick. The average hardness values of HWC-85 and HWC-73 were found to be 1,091 Hv (Vickers Hardness) and 1,083 Hv, respectively, while the HWC-66 exhibited relatively lower hardness value of 883 Hv. This indicates that a higher WC content results in increased hardness. Adhesion force between and substrates and coating materials exceeded 60 MPa for all specimens, however, there were no significant differences observed based on the tungsten carbide content. Furthermore, a taber-type abrasion tester was used for conducting abrasion resistance tests under specific conditions including an H-18 load weight at 1,000 g with rotational speed set at 60 RPM. The abrasion resistance tests were performed under ambient temperatures (RT: 23±2°C) as well as relative humidity levels (RH: 50±10%). Currently, the ongoing abrasion resistance tests will include some results in this study.
        14.
        2023.11 구독 인증기관·개인회원 무료
        This study focuses on the development of coatings designed for storage containers used in the management of radioactive waste. The primary objective is to enhance the shielding performance of these containers against either gamma or neutron radiation. Shielding against these types of radiation is essential to ensure the safety of personnel and the environment. In this study, tungsten and boron cabide coating specimens were manufactured using the HVOF (High-Velocity Oxy Fuel) technuqe. These coatings act as an additional layer of protection for the storage containers, effectively absorbing and attenuating gamma and neutron radiation. The fabricated tungsten and boron carbide coating specimens were evaluated using two different testing methods. The first experiment evaluates the effectiveness of a radiation shielding coating on cold-rolled steel surfaces, achieved by applying a mixture of WC (Tungsten Carbide) powders. WC-based coating specimens, featuring different ratios, were prepared and preliminarily assessed for their radiation shielding capabilities. In the gamma-ray shielding test, Cs-137 was utilized as the radiation source. The coating thickness remained constant at 250 μm. Based on the test results, the attenuation ratio and shielding rate for each coated specimen were calculated. It was observed that the gammaray shielding rate exhibited relatively higher shielding performance as the WC content increased. This observation aligns with our findings from the gamma-ray shielding test and underscores the potential benefits of increasing the tungsten content in the coating. In the second experiment, a neutron shielding material was created by applying a 100 μm-thick layer of B4C (Boron Carbide) onto 316SS. The thermal neutron (AmBe) shielding test results demonstrated an approximate shielding rate of 27%. The thermal neutron shielding rate was confirmed to exceed 99.9% in the 1.5 cm thick SiC+B4C bulk plate. This indicates a significant reduction in required volume. This study establishes that these coatings enhance the gamma-ray and neutron shielding effectiveness of storage containers designed for managing radioactive waste. In the future, we plan to conduct a comparative evaluation of the radiation shielding properties to optimize the coating conditions and ensure optimal shielding effectiveness.
        15.
        2023.10 구독 인증기관·개인회원 무료
        본 연구는 주변 환경의 차이에 따른 화분매개곤충의 유입 특성을 파악하기 위하여 국립수목원 내 진화속을걷 는정원과 부추속전문전시원에 식재된 울릉산마늘의 화분매개곤충을 조사하였다. 2023년 5월 22일부터 6월 2일 까지 꽃이 70% 이상 개화하였을 때 포충망을 활용하여 8일간 곤충을 채집하였고, 각 전시원 별 식생(피도), 기후 (온도·습도·조도)를 조사하였다. 조사 결과 진화속을걷는정원에서 피도 60% 온도 26.4℃, 습도 31.5%, 조도 40953.6lx, 화분매개곤충 20과 450개체, 부추속전문전시원은 피도 90%, 온도 25.6℃, 습도 31.6%, 조도 6387lx, 화분매개곤충 15과 196개체로 나타났다. 온도와 조도가 상대적으로 높은 진화속을걷는정원이 채집된 곤충의 다양성과 방문 빈도가 높았다. 시간대별 곤충의 방문 빈도를 비교해본 결과 온도와 조도는 개체수가 증가할 때 같이 증가하는 경향을 보였으며, 습도는 반대의 경향을 보였다.
        17.
        2023.05 구독 인증기관·개인회원 무료
        Natural uranium-contaminated soil in Korea Atomic Energy Research Institute (KAERI) was generated by decommissioning of the natural uranium conversion facility in 2010. Some of the contaminated soil was expected to be clearance level, however the disposal cost burden is increasing because it is not classified in advance. In this study, pre-classification method is presented according to the ratio of naturally occurring radioactive material (NORM) and contaminated uranium in the soil. To verify the validity of the method, the verification of the uranium radioactivity concentration estimation method through γ-ray analysis results corrected by self-absorption using MCNP6.2, and the validity of the pre-classification method according to the net peak area ratio were evaluated. Estimating concentration for 238U and 235U with γ-ray analysis using HPGe (GC3018) and MCNP6.2 was verified by 􀟙-spectrometry. The analysis results of different methods were within the deviation range. Clearance screening factors (CSFs) were derived through MCNP6.2, and net peak area ratio were calculated at 295.21 keV, 351.92 keV(214Pb), 609.31 keV, 1120.28 keV, 1764.49 keV(214Bi) of to the 92.59 keV. CSFs for contaminated soil and natural soil were compared with U/Pb ratio. CSFs and radioactivity concentrations were measured, and the deviation from the 60 minute measurement results was compared in natural soil. Pre-classification is possible using by CSFs measured for more than 5 minutes to the average concentration of 214Pb or 214Bi in contaminated soil. In this study, the pre-classification method of clearance determination in contaminated soil was evaluated, and it was relatively accurate in a shorter measurement time than the method using the concentrations. This method is expected to be used as a simple pre-classification method through additional research.
        18.
        2023.05 구독 인증기관·개인회원 무료
        The decommissioning of Korea Research Reactor Units 1 and 2 (KRR-1&2), the first research reactors in South Korea, began in 1997. Approximately 5,000 tons of waste will be generated when the contaminated buildings are demolished. Various types of radioactive waste are generated in large quantities during the operation and decommissioning of nuclear facilities, and in order to dispose of them in a disposal facility, it is necessary to physico-chemically characterize the radioactive waste. The need to transparently and clearly conduct and manage radioactive waste characterization methods and results in accordance with relevant laws, regulations, acceptance standards is emerging. For radioactive waste characterization information, all information must be provided to the disposal facility by measuring and testing the physical, chemical, and radiological characteristics and inputting related documents. At this time, field workers have the inconvenience of performing computerized work after manually inputting radioactive waste characterization information, and there is always a possibility that human errors may occur during manual input. Furthermore, when disposing of radioactive waste, the production of the documents necessary for disposal is also done manually, resulting in the aforementioned human error and very low production efficiency of numerous documents. In addition, as quality control is applied to the entire process from generation to treatment and disposal of radioactive waste, it is necessary to physically protect data and investigate data quality in order to manage the history information of radioactive waste produced in computerized work. In this study, we develop a system that can directly compute the radioactive waste characterization information at the field site where the test and measurement are performed, protect the stored radioactive waste characterization data, and provide a system that can secure reliability.
        1 2 3 4 5