검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 15

        1.
        2021.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The emission of particulate matter and volatile organic compounds (VOCs) from a motor vehicle painting booth was quantitatively evaluated. Most particulate matter was emitted during the spraying process, in which the PM10 concentration was 16.5 times higher than that of the drying process. When the paint was being sprayed, the particles with a diameter of 1.0~2.5 μm accounted for 39.4% and particles greater than 2.5 μm in diameter accounted for 30.6% of total particles. On the other hand, small particles less than 0.5 μm in diameter accounted for 52.4% of total particles during the drying process. In contrast to the particulate matter, high concentrations of VOCs were emitted during both spraying and drying processes. Butyl acetate, xylene, toluene, and m-ethyltoluene were the most abundant VOCs emitted from the motor vehicle painting booth. Additionally, xylene, butyl acetate, toluene, and 1,2,3-trimethylbenzene were the dominant ozone precursors. Especially, xylene exhibited the highest ozone production contribution (32.5~44.4%) among 34 species of the ozone precursors. The information obtained in this study can be used to establish a suitable management strategy for air pollutants from motor vehicle painting booths.
        4,200원
        2.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we listed the VOCs focusing on ozone precursors emitted from printing shops in urban areas. The emission characteristics of the VOCs from workplaces were evaluated in terms of the used inks. As a result of field measurements, more than 80% of detected VOCs showed high values of photochemical ozone creation potential (POCP). The main species were aromatic hydrocarbons such as ethylbenzene, toluene, ethyltoluene, xylene, trimethylbenzene and their isomers, and paraffin hydrocarbons such as nonane, decane, and octane. Comparative examination between pristine ink and the printing process revealed the emission of hydrocarbons with 8 to 12 carbons such as o-xylene to n-dodecane from the used inks and with 3 to 7 carbons such as acetone to 3-methylhexane from the printing process. The major contributors to ozone production in printing industries were toluene (12.2%), heptane (7.43%), and 1,2,3-trimethylbenzene (7.21%) in every step.
        4,200원
        3.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, public complaints about unpleasant odor are increasing, particularly in urban areas. One of the odor sources is meat grilling restaurants in the vicinity of the residential areas. In this study, we characterized the odorous compounds generated from the stack of grilling restaurants, and evaluated the removal efficiency of the control facilities. As a result of the field investigation, the dilution index of the complex odor exceeded 500 times that of all test restaurants. The main substance was acetaldehyde. In addition, the correlation coefficient (R2) between the total odor and the sum of odor activity values (SOAV) was 0.73, a value high enough to indicate significant responsibility. The performance of the control facility has been shown to be strongly influenced by maintenance activities, such as cleaning and filter replacements.
        4,000원
        4.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A pilot-scale biocover was installed at a sanitary landfill for municipal waste, and the removal of volatile organic compounds (VOCs) by the biocover was evaluated for a long period of 550 days. The biocover (2.5 m W × 5 m L × 1 m H) was constructed with the mixture of soil, perlite, earthworm cast and compost (6:2:1:1, v/v). The total VOCs concentration of the inlet gas into the biocover was 820.3 ppb~7,217.9 ppb, and the total VOCs concentration of the outlet gas from the surface of the biocover was 12.6 ppb~1,270.1 ppb. The average removal efficiency of total VOCs was 87.6 ± 11.0% (60.5% for minimum and 98.5% for maximum). Toluene concentration was the highest among the inlet VOCs, followed by ethylbenzene, m, p-xylene and o-xylene. These aromatic VOCs accounted for more than 50% of the total VOCs concentration. Other than these aromatic VOCs, hexane, cyclohexane, heptane, benzene, and acetone were major VOCs among the inlet VOCs. Compared with the VOC profiles in the inlet gas, the relative contribution of dichloromethane to the outlet VOCs emitted from the biocover layer increased from 0.1% to 15.3%. The average removal efficiencies of BTEX in the biocover were over 84% during the operation period of 550 days. The average removal efficiencies of hexane, cyclohexane and heptane in the biocover were 86.0 ± 18.9%, 85.4 ± 20.4% and 97.1 ± 4.0%, respectively. The removal efficiency of VOCs in the biocover decreased not only when the ambient temperature had fallen below 5oC, but also when the ambient temperature had risen above 23oC. Information on the VOCs removal characteristics of the biocover installed in the landfill field can be useful for commercializing the biocover technology for the treatment of VOCs.
        4,900원
        5.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the homogeneity and stability of standard samples for proficiency testing in indoor air quality within the country (formaldehyde, benzene, toluene, ethylbenzene, p-xylene, styrene, TVOC) were evaluated. The procedures and statistical analysis methods applied in ISO/IEC 13528 (2009) and KS A ISO Guide 35 (2005) were applied as evaluation methods. The homogeneity evaluation was a statistical analysis of repeated measurements of each of the 11 ports and between the 11 ports concentration data. As a result, the coefficient of variation (CV) was within the range of 1.9%~5.9%. The difference between the ports was found to be insignificant and met the statistical standard specified in KS Q ISO 13528. The stability evaluation was assessed by the change in concentration over the long-term stability of the standard samples stored for 90 days. The coefficient of variation (CV), which was within the range of 2.6%~9.0%, exhibited changes in the concentration of the long-term stored standard samples. However, the results satisfy the statistical standard specified in KS A ISO Guide 35. Overall, there is no significant difference between the homogeneity of the standard samples by the port and the stability of the long-term stored samples. Therefore, it is considered to be an appropriate method to supply standard samples in an indoor air quality proficiency test.
        4,000원
        6.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seasonal emission characteristics of odors and methane were investigated throughout the period of 17 months in which the emission status of odors and methane from soil cover layers in a sanitary landfill was measured. Complex odor emitted from soil cover layers fluctuated largely at the range of 7~20,800 OU (Odor Unit) in odor dilution ratio, and the median and average values were 2,080 and 4,203 OU, respectively. The intensity of complex odor showed higher values in the spring (5,663 ± 4,033 OU) and winter (6,056 ± 8,372 OU) than in the summer (1,698 ± 3,676 OU) and fall (1,761 ± 451 OU). Based on average concentrations, the compounds with high contribution values for the sum of the odor quotient (SOQ) were hydrogen sulfide (46.1%), methyl mercaptan (26.4%), and dimethyl sulfide (16.8%). This result shows that sulfur compounds were the main odor-causing compounds in the target landfill. The flux of complex odor was 0.17~70.36 OU·m−2·min−1 (Median 0.47, Average 5.40), and the flux of hydrogen sulfide was 0~114.70 μg·m−2·min−1 (Median 0.13, Average 5.91). The methane flux was 0.59~312.70 mg-CH4·m−2·min−1 (Median 25.61, Average 47.99). The methane concentrations emitted at the soil cover layers showed the highest values of 1.0~62.5% (Median 33.0, Average 21.1) in the spring, and the lowest values of 0.1~11.7% (Median 2.3, Average 3.7) in the winter. The methane concentrations in the summer and fall were similar with the average of 17.9% (range of 0.2-44.2%) and 12.5% (range of 2.2-42.5%), respectively. The emission data of odors and methane from soil cover layers can be utilized to establish management policy and apply mitigation technologies for the control of odor and greenhouse gases emitted in landfills.
        4,600원
        7.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the behavior of dominant microbial communities was investigated in the treatment of porcine carcasses using an anaerobic high temperature burial composting method. The correlation between odor emission and bacterial community structure was analyzed through principal component analysis and extended local similarity analysis. In the burial layer of porcine carcass, the dominant bacteria were Bacillaceae (46%), Thermoactinomycetaceae (15%) and Lactobacillaceae (4%) in the early stage and Bacillaceae (46%), Thermoactinomycetaceae (15%), Lactobacillaceae (4%) in the end. Clostridiaceae (CH3SH), Bacillacea ((CH3)2S2), Clostridium ((CH3)2S2), Clostridial (H2S), Oceanobacillus (H2S), and Thermoanaerobacteraceae (H2S) were closely related to the sulfurous odorants, which are the highest odor contributions. The emission of sulfurous odor substances such as H2S, CH3SH, (CH3)2S, and (CH3)2S2 showed a positive correlation with each other, but showed a negative correlation with nitrogenous odorants (NH3 and TMA), aldehydes, organic acids, and VOCs. The results of this correlation analysis can provide useful information that enables us to understand the characteristics of microbial communities and odor generation during the degradation of carcasses and to manage odors and burial sites in the treatment of carcass.
        4,000원
        8.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is very important to treat infected livestock carcasses safely and quickly. In this study, the degradation characteristics and odor generation characteristics of carcasses were investigated during the treatment of swine carcasses using the anaerobic burial composting method. While the carcasses were decomposed, the temperature remained high, at 40~55°C on average, and most of the carcasses were decomposed rapidly. The major odorcontributing substances in the buried composting method are sulfuric odor substances such as H2S, CH3SH, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), and the odor contribution of these substances is 93~99%. Among them, CH3SH, which accounts for about 56~89% of odor contribution, was the most representative indicator substance. Despite the anaerobic digestion process, the methane concentration in the digestion process was as low as 0.5~0.8% at the burial point of the carcass. The odor and methane produced during the decomposition of the carcasses decreased considerably during the discharge to the surface layer through the buried layer consisting of compost. These results suggest that anaerobic high temperature burial composting is one of the most useful methods to treat carcasses of infected livestock.
        4,300원
        9.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover- 1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.
        4,200원
        10.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, swine and cattle farms located in Jeollanam-do were selected to analyze and evaluate the components of odorants in livestock facilities. In addition, a preliminary survey of the literature was conducted to establish a sampling and analysis method for phenol and indoles which are major components of odor emissions from livestock facilities, yet are not regulated by the laws. To establish a sampling and analysis method for phenol and indoles, Tedlar bag and Tenax-TA sorbent tube was used as background concentration of blank sample and samples according to the elapsed time. The results obtained indicate the GC/MS analysis with Tenax-TA sorbent tube sampling was an effective method for measuring the compounds of phenol and indoles. In the swine facility, the rankings of the odorants in order, from highest to lowest, were ammonia, sulfuric compounds, phenol/indoles, volatile fatty acids. The main odorants were hydrogen sulfide (41.3%) and 4-methylphenol (p-cresol, 13.9%). In the swine slurry storage, hydrogen sulfide (33.7%), ammonia (18.8%), and 3-methylindole (skatole, 15.7%) were the main odorants, and hydrogen sulfide (31%) and i-valeric acid (32.4%) were the main odorants in the cattle farms.
        4,900원
        11.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carcasses of pigs were trench buried using either general soil or mature compost as a cover material and the malodorous substances discharged were observed about a year. With the soil burial method, the speed of decay was shown to be dominantly affected by the ambient air temperature. However the compost burial method’s decaying process took place quickly, even ambient air temperature was dropped; it holds the temperature of 40oC or higher. With the compost burial method, there was a period where, the temperature inside the pig carcasses and the temperature of cover-material layer were strongly reversed. From this discovery, level of decay process could be speculated. With the soil burial method there was a trend when malodorous substances concentration was high, the level of concentration in the cover soil was also tends to be high. However, the compost burial method had different result. When malodorous substances concentration was high the level of concentration in the compost cover layer was observed to be lower. This indicates compost burial method shown to intercept and absorb malodorous substances. Furthermore, the compost burial method appears to be able to contribute to deactivate the pathogens by quickly decompose the carcasses at a high temperature.
        4,500원
        12.
        2014.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the study, public facilities in Korea covered by the law, including PC-rooms, child care facilities, bus terminalwaiting rooms, elderly nursing facilities, movie theaters, underground subway stations, super super markets andindoor parking lots (8 types of facility, for a total of 32 locations) were investigated for indoor gas phase PAHsand particulate phase PAHs. PAHs source profiles were investigated as well. Finally, public facilities PAHs wereestimated the main influencing factors and sources of indoor by factor analysis. Underground subway stations andPC-rooms tended to be higher the concentration than other facilities. It judged each the effects of car exhaust,smoking, and elderly nursing facilities, child care facilities, movie theaters, where the influence of the outdoor airis less relatively direct effect that car exhaust and incoming of ambient air, were showed low concentration. Supersuper markets displayed a large amount of different products and bus terminal waiting rooms influenced car exhaustis higher than those that. Sources of indoor PAHs in public facilities make out profiling(cooking process: broilingmeat and fish, incense, shampoo, decorative candles, tobacco) and on the effects of ambient on reported existingliterature(of diesel and gasoline engines, heating fuel, coke oven, a wood combustion) was referred for factor analysisto estimate emission sources. As a result of particulate PAHs phase, three major factors were showed that factor1: cooking, use of gas fuel and combustion devices, factor 2: smoking. Factor 3: car exhaust. Factor analysis resultsof gas PAHs phase are similar to particulate PAHs phase. Additionally, factors such as air fresheners was estimated.
        4,300원
        13.
        2014.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, leachate treatment facility (outlet, facility inside) and landfill sections (vent systems, landfill surface)of nine landfills is being buried in korea were studied emission characteristics of odor compounds. Air dilutionvalue in ventpipes of landfill section was generally highest and was more 3 times higher than emission standard(air dilution value of facilities outlet : 500) in Daejeon, Tongyeong, and Busan landfill. Outlet of leachate treatmentfacilities in Tongyeong and Daegu landfill, in case, was higher respectively 20 times, 6 times than other landfills,commonly show that a large contribution to the odor of hydrogen sulfide. In case of ordor emission rate, ammoniaand hydrogen sulfide were surveyed to comprise a high rate for odor emission rate. Odor emissions based onlandfill scale, large landfill (Sudokwon) and small landfills (Yeosu, Chuncheon, Chungju) is low in odor emissionsper unit area, whereas medium landfill (Busan, Daejeon, Daegu) was estimated to be high odor emissions. In caseof large landfill, leachate treatment facilities is management in good condition and discharged odor emission oflandfill sections was low into ambient air. In case of small landfill, decay gases and leachate is few. Thereforeodor emissions is fewer than estimated medium landfill. In case of medium landfill, management condition ofleachate treatment facility was in poor and landfill sections was under not stabilization stage. Thus, mediumlandfills was identified that needs to be intensive care.
        4,300원
        14.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objectives of this study were to analyze the characteristics of odor in the major facilities of a fishery industrial complex using the air dilution olfactory method and the instrumental analysis method. The results indicate that although the limit of dilution to threshold (D/T) ratio in the major facilities is not regulated by the Odor Emission Standard, the mean (D/T) ratio over than 3,000 which is higher than the limit in the outlet of industrial area 3 times was found at three sampling sites. In the case of the concentration of the malodorous compounds, ammonia concentration is higher than any other odor compounds. The methyl mercaptan, n-Butyric acid and hydrogen sulfide as the main pollutants are confirmed by the odor quotient (OQ). In our study, it is showed a moderately good correlation between the (D/T) ratio and the sum of OQ. By this result, we can estimate the odor characteristics and evaluate the potential impact of each odor compound. In addition, we consider that it will affect the people"s normal life and even cause for complaint around the boundary area by the diffusion of odor.
        4,000원
        15.
        2009.04 KCI 등재 서비스 종료(열람 제한)
        The results of particulate matters level and heavy metal concentration, which surveyed in Gwang-Yang, Dang-Jin steel industry area, are as follows; The PM2.5, PM10 of exposure area are 22.3μg/m3, 40.4μg/m3 each in Kum-Ho dong, and 28.1μg/m3, 51.5 each in Jung dong. The PM2.5, PM10 of control area are 16.4μg/m3, 29.5μg/m3 each in Bonggang-myeon. The level is higher in exposure area than control area. In case of Dang Jin, the concentration of PM10 and PM2.5 is higher in exposure area than control area (PM2.5-20.4μg/m3, PM10-39.2μg/m3). The Pb level of Dang Jin area is higher in exposure area(0.13μg/m3) than control area(0.1μg/m3), and both Gwang-Yang and Dang-Jin area lower level than the Guideline level of Korea EPA.