복어는 동아시아 요리의 고급 원료로 상업적 가치가 높 은 수산자원이나, 야생 복어의 테트로도톡신은 치명적인 식중독 사건을 꾸준히 유발하고 있다. 자주복은 한국, 일 본, 중국에서 인기 있는 복어 종으로, 테트로도톡신이 없 는 복어 생산을 위해 양식되는 주된 어종이다. 따라서 양 식 자주복과 자연산 자주복의 구별은 식품 안전과 규제측면에서 매우 중요하다. 본 연구에서는 국내 온라인 및 오프라인 시장에서 판매되는 100개의 자주복 제품을 대상 으로 ‘양식 및 자연산’ 여부를 PCR 기반 방법을 이용하 여 확인하였으며, PCR 결과를 제품의 표시사항 정보와 비 교하였다. PCR 분석에는 자연산 자주복과 양식 자주복의 유전적 다양성 차이를 보이는 6개의 마커를 이용하였다. PCR 분석 결과 모든 양식 자주복 제품에서는 6개 마커에 서 모두 완전한 증폭 패턴을 보였으나, 자연산 자주복 제 품에서는 0 - 5개 마커에서 만 무작위 증폭 패턴을 나타냈 다. 따라서 6개 유전 마커의 증폭 패턴을 이용한 분석법 은 향후 자주복 제품의 허위표시 모니터링 및 테트로도톡 신 유무의 신속 검사에 널리 활용될 수 있을 것이다. 또 한 본 연구 결과는 현행 복어 종 판별을 보완할 수 있는 기초자료를 제공해 줄 수 있다.
Transition metal/porous carbon composite is good electrode candidate since porous carbon provides high surface porosity which promotes the access of electrolyte ions, and transition metal enables redox reactions to improve specific capacitance and energy density. In this study, iron/carbon nanofiber (CNF) composite electrodes were prepared by grafting ferrocenecarboxaldehyde to the CNFs which were fabricated by electrospinning and thermal treatment of polyacrylonitrile (PAN). The presence of iron on the CNF surface was confirmed by SEM/EDS, ICP-MS and XPS. Electrochemical performance was evaluated using a three-electrode cell with 1 M Na2SO4 as an electrolyte. Iron-grafted CNFs exhibited a high specific capacitance of 358 F g− 1 and an energy density of 49.7 Wh kg− 1 at 0.5 A g− 1, which is significantly higher than those for untreated CNFs (68 F g− 1 and 9.4 Wh kg− 1). This demonstrates that this iron/CNF composite is promising candidate for supercapacitor electrode with outstanding energy storage performance.
Lumpy Skin Disease (LSD) and Foot-and-Mouth Disease (FMD) cause substantial economic losses on the livestock industry. Therefore, vaccinations have been implemented as the control strategy in endemic countries. However, the potential adverse effects of administering vaccines for both diseases simultaneously have not been thoroughly evaluated. The aim of this study was to assess the impact of vaccinating dairy cows with either or both LSD and FMD vaccines on milk production and physiological parameters such as milk temperature, rumination time and body weight. The experimental groups were divided into four according to the injection materials: 1) saline, 2) LSD vaccine, 3) FMD vaccine, and 4) both vaccines. The impact of vaccination on milk yield and physiological parameters was evaluated daily until 12 days post-vaccination, and milk components were analyzed twice, once per week. Among the experimental groups as well as each vaccine group, no statistically significant differences (p < 0.05) were observed at milk yield, milk components, or milk temperature. This suggests that simultaneous vaccination of LSD and FMD can be administered without adverse effects.
Additive manufacturing makes it possible to improve the mechanical properties of alloys through segregation engineering of specific alloying elements into the dislocation cell structure. In this study, we investigated the mechanical and microstructural characteristics of CoNi-based medium-entropy alloys (MEAs), including the refractory alloying element Mo with a large atomic radius, manufactured via laser-powder bed fusion (L-PBF). In an analysis of the printability depending on the processing parameters, we achieved a high compressive yield strength up to 653 MPa in L-PBF for (CoNi)85Mo15 MEAs. However, severe residual stress remained at high-angle grain boundaries, and a brittle μ phase was precipitated at Mo-segregated dislocation cells. These resulted in hot-cracking behaviors in (CoNi)85Mo15 MEAs during L-PBF. These findings highlight the need for further research to adjust the Mo content and processing techniques to mitigate cracking behaviors in L-PBF-manufactured (CoNi)85Mo15 MEAs.
This study developed conductive inks composed of carbon black (CB) and silver nanowires (Ag NWs) for cost-effective screen-printing on fabrics. The Ag NW density within the CB matrix was precisely controlled, achieving tunable electrical conductivity with minimal Ag NW usage. The resulting inks were successfully patterned into shapes such as square grids and circles on textile surfaces, demonstrating excellent conductivity and fidelity. Adding 19.9 wt% Ag NWs reduced sheet resistance by ~92% compared to CB-only inks, highlighting the effectiveness and potential of this hybrid approach for cost-effective, high-performance textile-based electronics. The one-dimensional morphology of Ag NWs facilitated the formation of conductive percolation networks, creating efficient electron pathways within the CB matrix even at low loadings. This work advances the field of CB-based conductive inks and provides a scalable and practical method for producing functional, patterned electronic textiles.
This study confirmed the fungal community of rice makgeolli sold in the eastern part of Jeollanam-do using ITS 2 sequence-based metagenome analysis. A total of 18 fungi were found in six makgeolli samples, with Saccharomyces cerevisiae being dominant in all samples at high rates ranging from 96.61~99.96%. The six makgeolli samples were classified into three groups based on the PCoA and UPGMA tree analysis results using the Jaccard distance matrix. Network analysis of the relationships among the 18 identified fungal species helped identify a fungus that demonstrated either a positive or negative correlation with the dominant species, Saccharomyces cerevisiae. This study provides important foundational data for understanding the fungal composition in the makgeolli fermentation process.
Malaria remains a significant public health issue, particularly in regions such as the Korean Demilitarized Zone (DMZ). Effective malaria control and prevention require precise prediction of mosquito density across both monitored and unmonitored areas. This study aimed to develop predictive models to estimate the abundance of malaria vector mosquitoes by integrating meteorological and geographical data. Data from mosquito surveillance sites and NASA MODIS land cover datasets acquired between 2009 and 2022 were utilized. Two predictive models, the Gradient Boosted Model (GBM) and Principal Component Regression (PCR), were employed and evaluated. Model performance was assessed using the coefficient of determination (R²). Results showed that PCR outperformed GBM in predictive accuracy, suggesting that PCR is more robust in handling multicollinearity among variables. However, both models did not show practically-usable level of prediction performance. This study provides a preliminary but foundational framework for extending predictive modeling to broader regions, thereby supporting malaria prevention efforts through improved risk mapping.
장미과의 과일 및 관상용 식물은 세계적으로 경제적, 원예적 가치가 뛰어나다. 장미과의 뱀딸기는 관상 및 약용 작물로써 이용가치가 매우 높은데, 증식방법이 마련되어 있지 않은 실정 이다. 뱀딸기의 종자 종자발아 특성을 조사하기 위해 내부형태 관찰, 수분흡수실험, 온도 별 배양, move-along test, GA3처리 실험을 수행하였다. 뱀딸기 종자는 탈리시점부터 성숙한 배를 지닌다. 수분흡수실험 결과, 침지 3시간만에 종자 무게가 초 기무게 대비 100% 이상 증가하였다. 온도 별 배양 실험 결 과, 25/15, 20/10, 15/6, 5, 25, 20, 15°C에서 각각 8주간 배양하였을 때 88, 71, 61, 12, 89, 39, 17%로 나타났다. Move-along test의 T125/15°C(12주)→20/10°C(4주)→ 15/6°C(4주)→5°C(12주)]에서 12주차까지 72%가 발아하였고 T2[4°C(12주)→15/6°C(4주)→20/10°C(4주)→25/15°C(12주)] 에선 20/10°C까지 발아하지 않았고 25/15°C에 도달하고 나서 발아하여 최종발아율은 16%로 나타났다. GA3처리구에선 배양 3주차에 발아를 시작한 반면에 대조구에선 배양 4주차부터 발 아하였다. 따라서 한반도 자생 뱀딸기 종자는 PD로 분류하였다. 뱀딸기속과 Potentilla속 식물은 서로 근연관계이고, 종간의 종 자휴면에 차이가 나타나 종자휴면 특성에 분화가 일어난 것으로 판단된다.
The development of thermoelectric (TE) materials to replace Bi2Te3 alloys is emerging as a hot issue with the potential for wider practical applications. In particular, layered Zintl-phase materials, which can appropriately control carrier and phonon transport behaviors, are being considered as promising candidates. However, limited data have been reported on the thermoelectric properties of metal-Sb materials that can be transformed into layered materials through the insertion of cations. In this study, we synthesized FeSb and MnSb, which are used as base materials for advanced thermoelectric materials. They were confirmed as single-phase materials by analyzing X-ray diffraction patterns. Based on electrical conductivity, the Seebeck coefficient, and thermal conductivity of both materials characterized as a function of temperature, the zT values of MnSb and FeSb were calculated to be 0.00119 and 0.00026, respectively. These properties provide a fundamental data for developing layered Zintl-phase materials with alkali/alkaline earth metal insertions.
Background: Aflatoxin B1 (AFB1) is a toxic metabolite generated by Aspergillus species and is commonly detected during the processing and storage of food; it is considered a group I carcinogen. The hepatotoxic effects, diseases, and mechanisms induced by AFB1 owing to chronic or acute exposure are well documented; however, there is a lack of research on its effects on the intestine, which is a crucial organ in the digestive process. Dogs are often susceptible to chronic AFB1 exposure owing to lack of variation in their diet, unlike humans, thereby rendering them prone to its effects. Therefore, we investigated the effects of AFB1 on canine small intestinal epithelial primary cells (CSIc). Methods: We treated CSIc with various concentrations of AFB1 (0, 1.25, 2.5, 5, 10, 20, 40, and 80 μM) for 24 h and analyzed cell viability and transepithelial-transendothelial electrical resistance (TEER) value. Additionally, we analyzed the mRNA expression of tight junction-related genes (OCLN, CLDN3, TJP1, and MUC2), antioxidant-related genes (CAT and GPX1), and apoptosis-related genes (BCL2, Bax, and TP53). Results: We found a significant decrease in CSIc viability and TEER values after treatment with AFB1 at concentrations of 20 μM or higher. Quantitative polymerase chain reaction analysis indicated a downregulation of OCLN, CLDN3, and TJP1 in CSIc treated with 20 μM or higher concentrations of AFB1. Additionally, AFB1 treatment downregulated CAT , GPX1, and BCL2. Conclusions: Acute exposure of CSIc to AFB1 induces toxicity, and exposure to AFB1 above a certain threshold compromises the barrier integrity of CSIc.