프리지아 ‘Sunny Gold’는 농촌진흥청 국립원예특작과학원 에서 2010년 노랑색 반겹꽃 프리지아 육성계통 ‘036010’을 모본으로 진노란색 홑꽃 ‘Golden Flame’을 부본으로 교배하여 획득한 종자로부터 2011년 진노란색 겹꽃의 향기가 강한 프리지아 계통을 선발하여 품종화 하였다. 2011년부터 2016년까지 개화 생육특성검을 수행하였으며 핵심수요자의 기호도 평가를 통해 선발되어 2017년 ‘Sunny Gold’ 로 명명되었다. ‘Sunny Gold’는 RHS color chart YO17B의 노란색 겹꽃 프리지아 품종으로 화폭은 6.7cm로 대조품종 ‘Golden Flame’ 6.1cm에 비해 크고, 분지수는 6.5로 다수확성 품종이다. 초장이 101.9cm로 초세가 강하다. ‘Sunny Gold’의 소화수 및 소화장은 각각 13.0개, 9.3cm이며 개화소요일수는 137.7일이다. 이 품종의 절화수명은 약 9일이며 자구번식력은 5.3배로 대조 품종 ‘Golden Flame’ 4.3배에 비해 우수하다. 전자코를 이용한 PCA분석결과 PC1과 PC2는 각각 99.3%와 0.6%로 전체 변이량의 99.9%를 반영하고 있다. Rader plot 분석결과 총 6개 센서에서 모두 ‘Sunny Gold’의 센서값이 향기가 강한 상용품종 ‘Yvonne’의 값에 비해 높게 나타나 ‘Sunny Gold’의 향기가 더 강한 것으로 나타났다.
Distillers dried grain (DDG) and makgeolli spent grain (MSG) are agricultural by-product to produce alcoholic beverage. However, they are known to contain enough nutrients. Mealworm is a promising insect resource for an animal feed ingredient as well as alternative human food. With low cost, DDG and MSG were investigated as a feed ingredient for rearing high quality mealworms. DDG and MSG were mixed with wheat bran and compared to control feed (only wheat bran) for its effects on larval survivorship, larval weight, duration for larval development, pupation rate, and pupal weight. Adding DDG on wheat bran showed positive results for larval weight, duration for larval developmental period, and pupation rate. However, adding MSG made longer duration for larval development, but it also improved larval weight, pupal weight with more than 90% pupation rate. We confirmed that adding 30~50% of DDG or MSG to conventional wheat bran have a strong potential to replace the conventional wheat bran insect feed for quality insect production.
Insect is an important player in the ecosystem as a prey for animals. Moreover, they are a valuable candidate food source for rearing animal. Tenebrio molitor (Coeloptera: Tenebrionidae) larvae are known as a good food source with high protein, unsaturated fatty acid, minerals. Therefore, it has strong potential to substitute the conventional meat consumption. To utilize T. molitor as a feed, the standard mass-rearing protocol is required. To make standard mass-rearing protocol, we tested different temperature(17.5, 20, 22.5, 25, 27.5 and 30°C) conditions for egg, larvae, pupae and adult T. molitor to identify the optimal rearing condition. Hatching was occurred within 15~32.5°C range. However, 17.5~27.5°C was required to get more than 70 % hatching rete. When the eggs were treated in 22.5~27.5°C, all eggs were hatched within 10 days. As larval development, shorter developmental period, higher pupation and eclosion rates were observed within 25~27.5°C temperature range. In addition, we compared the number of egg, oviposition duration and time required to start egg-laying. The minimum egg-laying(258.40±10.86) was observed at 17.5°C, but the maximum(749.10±7.45) was at 27.5°C. The maximum oviposition duration (137.00±12.73 day (mean±S.D.)) was achieved at 27.5°C, but the minimum (87.50±3.54 day (mean±S.D.)) was at 30°C. The time required to start egg-laying was less than 10 days at 17.5, 27.5, and 30°C. To consider all the factors, we concluded that the optimal temperature is 27.5 °C.
Peptidoglycan recognition proteins (PGRPs) are family of innate immune molecules that recognize bacterial peptidoglycan. PGRP-LE, a member of the PGRP family, selectively binds to diaminopimelic acid (DAP)-type peptidoglycan to activate both the immune deficiency (IMD) and proPhenoloxidase (proPO) pathways in insects. A PGRP-LE-dependent induction of autophagy to control Listeria monocytogenes has also been reported. We identified and partially characterized a novel PGRP-LE homologue, from Tenebrio molitor and analyzed its functional role in the survival of the insect against infection by a DAP-type PGN containing intracellular pathogen, L. monocytogenes. The cDNA is comprised of an open reading frame (ORF) of 990 bp and encodes a polypeptide of 329 residues. TmPGRP-LE contains one PGRP domain, but lacks critical residues for amidase activity. Quantitative RT-PCR analysis showed a broad constitutive expression of the transcript at various stages of development spanning from larva to adult. RNAi mediated knockdown of the transcripts followed by a challenge with L. monocytogenes showed a significant reduction in survival rate of the larvae, suggesting a putative role of TmPGRP-LE in sensing and control of L. monocytogenes infections in T. molitor. These results implicate PGRP-LE as a defense protein necessary for survival of T. molitor against infection by L. monocytogenes.
CD63, a member of tetraspanin membrane protein family, plays pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic ‘Cys-Cys-Gly’ motif and ‘Cys188’ residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcript was upregulated the maximum 4.5 fold in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also made significant increase in the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.
Apolipophorin III (apoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune response of insects. We cloned full-length cDNA encoding putative apoLp-III from larvae of the coleopteran beetle, Tenebrio molitor (TmapoLp-III), by identification of clones corresponding to the partial sequence of TmapoLp-III, subsequently followed with full length sequencing by a clone-by-clone primer walking method. The complete cDNA consists of 890 nucleotides, including an ORF encoding 196 amino acid residues. Excluding a putative signal peptide of the first 20 amino acid residues, the 176-residue mature apoLp-III has a calculated molecular mass of 19,146 Da. Genomic sequence analysis with respect to its cDNA showed that TmapoLp-III was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative 5’-flanking region. BLAST and phylogenetic analysis reveals that TmapoLp-III has high sequence identity (88%) with Tribolium castaneum apoLp-III but shares little sequence homologies (<26%) with other apoLp-IIIs. Homology modeling of Tm apoLp-III shows a bundle of five amphipathic helices, including a short helix 3’. The ‘helix-short helix-helix’ motif was predicted to be implicated in lipid binding interactions, through reversible conformational changes and accommodating the hydrophobic residues to the exterior for stability. Highest level of TmapoLp-III mRNA was detected at late pupal stages, albeit it is expressed in the larval and adult stages at lower levels. The tissue specific expression of the transcripts showed significantly higher numbers in larval fat body and adult integument. In addition, TmapoLp-III mRNA was found to be highly up-regulated in late stages of L. monocytogenes or E. coli challenge. These results indicate that TmapoLp-III may play an important role in innate immune responses against bacterial pathogens in T. molitor.
Mealworms, Tenebrio molitor (L.) is used as an important animal feed additive for growth promotion and health management, but potentially exposes to fungal infection. In this work, virulence of two species of entomopathogenic fungi against the insect, and the relationship between abiotic features and virulence were investigated. Secondly our consideration was also given to the effect of chemical fungicides on conidial germination for risk control. Between Beauveria bassiana (Bb) and Metarhizium roberstii (Mr) (previously M. anisopliae), Bb isolates had much higher virulence (~100% mortality in 3~4 days after the treatment), rather than Mr isolates in laboratory assays. Next, fungus-treated mealworms were kept at wheat bran at 20, 25, 30 and 35℃ with 3, 6, 9 times of water spray to the feeds for set-up of different humidity conditions. Inoculation of fungi to mealworms was conducted by fungal spray and feeding methods, which resulted in higher virulence in feeding method. In the feeding method, all temperature treatments except 35℃ showed high virulence against mealworms, but any significant relationship between virulence and humidity was not observed. In the chemical fungicide screening, fluazinam (CAS No. 79622-59-6) and mancozeb (8018-01-7) significantly inhibited the germination of Bb and Mr conidia. This work suggest that contamination of wheat bran with fungal pathogens, particularly B. bassiana may induce mycosis of mealworms, but introduction of effective fungicides possibly reduce fungal infection.
In recent times, NFC technology adaptations for smartphones have been increasing. This study proposes the adaptation of agri-food business models based on NFC technology and presents the basic technological characteristics of NFC. An NFC tag can store more information than prior tagging technology methods, such as QR codes, and provides a better user experience. Based on the unique features of NFC, this study suggests an NFC business model application for the agri-food business.
The dissemination process of agricultural research and development (R&D) results has somewhat different characteristics from that of typical R&D results. However, these characteristics are not adequately considered on the basis of an examination of the current performance system, the resulting management plans, and strategies for the application and dissemination of the results of agricultural R&D in Korea. The performance evaluation indicator exposed the problem of the inadequate consideration of the characteristics of each of these areas, particularly the lack of unified R&D-related institutions and the inadequacy of the system to monitor outcomes. To address these shortcomings in the agricultural R&D programs in Korea, the policies pertaining to agricultural R&D performance, results management, and dissemination in the U.S. and Japan were examined. Based on these investigations, we proposed strategies to improve the agricultural R&D policies in Korea.
Bee venom contains a variety of peptides and enzymes, including serine proteases. While the presence of serine proteases in bee venom has been demonstrated, the role of these proteins in bee venom has not been elucidated. Furthermore, there is currently no information available regarding the melanization response or the fibrin(ogen)olytic activity of bee venom serine protease, and the molecular mechanism of its action remains unknown. Here we show that bee venom serine protease (Bi-VSP) is a multifunctional enzyme. In insects, Bi-VSP acts as an arthropod prophenoloxidase (proPO)-activating factor (PPAF), thereby triggering the phenoloxidase (PO) cascade. Bi-VSP injected through the stinger induces a lethal melanization response in target insects by modulating the innate immune response. In mammals, Bi-VSP acts similarly to snake venom serine protease, which exhibits fibrin(ogen)olytic activity. Bi-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products, defining roles forBi-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings provide a novel view of the mechanism of bee venom in which the bee venom serine protease kills target insects via a melanization strategy and exhibits fibrin(ogen)olytic activity.
We describe here the cloning and characterization of a cDNA encoding the ferritin heavy chain homologue (TeFerHCH) from the cricket Teleogryllus emma. The TeFerHCH gene spans 1,009 bp and consisted of four introns and five exons coding for 217 amino acids residues. The TeFerHCH subunit contained the conserved motifs for the ferroxidase center typical of vertebrate ferritin heavy chains and the iron-responsive element (IRE) sequence with a predicted stem-loop structure was present in the 5'-untranslated region (UTR) of TeFerHCH mRNA. TeFerHCH was grouped with the S type (HCH) in a phylogenetic tree. The TeFerHCH cDNA was expressed as approximately 27 kDa polypeptide in baculovirus-infected insect Sf9 cells. Northern blot analysis revealed that TeFerHCH exhibited ubiquitous expression and was upregulated by wounding and iron overload in the fatbody, suggesting a functional role for TeFerHCH in iron metabolism.
In order to establish a year round indoor-rearing system for Copper butterflies; large copper butterfly, Lycaena dispar, the effect of temperature on larval development and diapause was investigated. Temperature has been suggested as an important factor regulating the developmental rate, length of life, and survival rate from insect. As temperature increased, the developmental period was gradually shorten. The developmental periods of large copper larvae had a range of 11.0 days to 28.5 days at 30℃ and 17.5℃ respectively. The highest emergence rate was 94.2% recorded at 20℃. And the low emergence rate was 72.7% under 17.5℃. We investgated the sensitive stages to diapause induction in the larger copper effect of temperature and photoperiod. The experiment involves transfer of individuals from diapause averting (LD 16:8h, 25℃) to diapause inducing condition (LD 8:16h, 20℃) at various stages. Diapause was induced in 95.2% insect transferred at hatching larvae, in 15.6% of insects transferred at 2nd stadium molt, in 0% of insects transferred at after 3rd stadium molt. Percentage diapause induction increase with the length of short days and low temperature experienced. The main stage sensitive to photoperiod and temperature induction of diapause determination is the early first larval instar. The diapause induction began 14 days and ended 20 days after hatching larvae (LD 8:16h, 20℃).