검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 47

        1.
        2022.10 구독 인증기관·개인회원 무료
        A large spectrum of possible stakeholders and important factors for safety improvement during decommissioning of nuclear facilities should be identified. Decommissioning includes additional aspects which are of interest to a wider range of stakeholders. The way in which local communities, the public in general, and a wide range of other parties are engaged in dialogue about decommissioning of nuclear facilities is likely to become an increasingly important issue as the scale of the activity grows. Timely stakeholder involvement may enhance safety and can encourage public confidence. Stakeholder engagement may result in attention to issues that otherwise might escape scrutiny. Public confidence is improved if issues that are raised by the public are taken seriously and are carefully and openly evaluated. Experience in many countries has shown that transparency can be an extremely effective tool to enhance safety performance. It sets out the development and implementation of an effective two-way process between the organization and stakeholders. Meaningful engagement is characterized through a flow of communication, opinions and proposals in both directions and the use of collaborative approaches to influence and explain decisions. The process is one in which an organization learns and improves its ability to perform meaningful stakeholder engagement while developing relationships of mutual respect, in place of one-off consultations. The evolving nature of this process is particularly relevant to pipeline projects, which will have differing stakeholder engagement requirements at each phase of the project lifecycle. Activity undertaken at all stages of the process should be documented to ensure engagement success can be reviewed and improved and to ensure historical decisions or engagements are captured in case stakeholders change during the progression of time and previous consultation records are required.
        3.
        2018.05 구독 인증기관·개인회원 무료
        The Semi-Rigid Pavement (SRP) mixture is composed of Gap Graded Asphalt (GGA) mixture (air void = 20~28%) and cement paste. By inserting cement paste into voids in GGA mixture, SRP can provide not only flexibility but also rigidity characteristics on pavement performance. SRP can mitigate pavement surface temperature increase during summer session, provide better smoothness and mitigate rutting distress due to heavy weight vehicles, successfully. In Japan, SRP is widely applied in cross section area, heavy vehicle parking lot and highway ticketing booth in highway network system. In South Korea, SRP was introduced and applied since 2005. However, still more researches and studies are needed to understand material characteristics and improve performance of SRP. Moreover, the current SRP system in South Korea merely follows and adapts the aggregate gradation information from Japan which needs to be amended and customized into original material (i.e. aggregate, binder and cement) situation of South Korea. In this paper, SRP system based on Stone Mastic Asphalt (SMA) mixture design originated from Korea Expressway Corporation (KEC) and enhanced cement paste with addition of fly-ash and slags was developed. In addition, an optimized proportion between asphalt mixture air voids and cement paste amount with consideration of economic benefit was introduced. Based on field evaluation process it can be said that the newly developed SRP system can successfully adapted not only in static site on highway: parking lots or ticketing booth, but also in dynamic site on highway: driving and wheel path.
        4.
        2018.05 구독 인증기관·개인회원 무료
        In case of performing asphalt pavement overlay on existing concrete pavement layer, applying asphalt emulsion tack-coating or spreading prime-coating is considered to improve adhesion between asphalt and concrete layer. After coating work is done a curing process is considered not only for promoting evaporation process in coated (and/or spread) asphalt emulsion, but also for generating a membrane which can act as a bonding agent. Finally, asphalt overlay construction is performed when this curing process is completely done. However, during asphalt overlay construction process remarkable amount of spread tack-coating layer is lost due to asphalt material transfer vehicles (e.g. trucks, approximately 40~50% of total spread tack coating material is lost). In this paper, a new pavement equipment contains simultaneous asphalt emulsion spreading ability and corresponding construction techniques are introduced. Through applying this equipment, non-stop two step sequent working process: spreading asphalt emulsion on to existing concrete pavement layer then paving asphalt material for overlay construction, is available. During pavement working process temperature of asphalt material was kept with ranged between 130ºC and 170ºC. After performing field performance evaluation, it was found that crucial improvement in pavement layer adhesion, crack and rutting resistant ability were observed compared to the conventional paving method.
        8.
        2011.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Poly(vinyl chloride)-g-poly(oxyethylene methacrylate) (PVC-g-POEM) 가지형 공중합체를 원자전달라디칼 중합을 통해 합성하여 전기변색소자의 전해질에 적용하였다. 가소화된 고분자 전해질은 가소제로서 propylene carbonate (PC)/ethylene carbonate (EC) 혼합물을 도입하여 제조하였으며, Lithium tetrafluoroborate (LiBF4), lithium perchlorate (LiCIO4), lithium iodide (LiI) and lithium bistrifluoromethanesulfonimide (LiTFSI)를 사용하여 염의 종류에 따른 영향을 조사하였다. 광각 x-선 산란(WAXS)과 시차주사 열량법(DSC) 측정 결과 고분자 전해질의 구조와 유리전이온도(Tg)가 변하였고, 이는 POEM 내의 에테르의 산소와 리튬염 사이의 상호작용으로 인해 변했다는 것을 FT-IR 분광법을 통하여 확인하였다. 투과전자현미경(TEM) 측정 결과 PVC-g-POEM 가지형 공중합체의 미세상분리 구조가 PC/EC와 리튬염의 도입에도 변하지 않는 것을 관찰하였다. 가소화된 고분자 전해질은 poly(3-hexylthiophene) (P3HT) 전도성 고분자를 이용한 전기변색소자에 적용되었다.
        4,000원
        9.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 poly(vinyl chloride) (PVC)가지형 공중합체 전해질과 헤테로폴리산(HPA)을 이용하여 유무기 합성 전해질막을 제조하였다. poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA)는 PVC의 이차 염소의 직접적인 개시를 이용한 atom transfer radical polymerization (ATRP)로 합성하였다. 이때, HPA 나노입자는 수소 결합을 통해 PVC-g-PSSA 가지형 공중합체와 결합하는 것을 FT-IR spectroscopy를 통하여 확인하였다. 전해질막의 수소이온 전도도는 HPA의 질량 분율이 0.3이 될 때까지 상온에서 0.049에서 0.068 S/cm로 증가하였다. 이것은 HPA 나노입자 고유의 전도도와 가지형 공중합체가 가지고 있는 술폰산의 강화된 산도 때문이라고 추정된다. 합습률은 HPA의 질량 분율이 0.45까지 증가할수록 130에서 84%로 감소하였다. 이것은 HPA나노입자와 고분자 메트릭스 사이의 수소 결합의 상호작용 때문에 물을 흡수하는 site의 수가 감소한 결과라고 볼 수 있다. 열중량 분석결과 HPA의 농도가 증가할수록 전해질막의 열적 안정성이 강화된다는 것을 알 수 있었다.
        4,000원
        14.
        2007.12 KCI 등재 서비스 종료(열람 제한)
        A new sprout-soybean cultivar, "Jonam" was developed at the Honam Agricultural Research Institute (HARI) in 2006. Jonam was selected from a cross between Eunhakong and Jeonju-I1. The preliminary, advanced, and regional yield trials for evaluation and selection of this line (Iksan 48) were carried out from 2002 to 2006. This cultivar has a determinate growth habit with purple flower, grayish brown pubescence, grayish brown hilum, lanceolate leaflet shape and small seed size (9.6 grams per 100 seeds). The maturity date of "Jonam" is 18 days earlier than that of the check variety, "Pungsan". It has good seed quality for soybean-sprout and resistance to lodging. This cultivar has resistance to soybean mosaic virus (SMV) and necrotic symptom(SMV-N). The average yield of "Jonam" was 2.57 ton per hectare in the regional yield trials for double cropping carried out for three years from 2004 to 2006.
        15.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        A new black seed coat soybean variety, “Socheong” was developed at the Yeongnam Agricultural Research Institute (YARI) in 2006. The goal to breed the black seed coat soybean is to develop the cultivar with high yield, lodging tolerance, resistant to disease such as soybean mosaic virus (SMV), and bacterial pustule and seed size. Socheong was selected from the cross between Milyang 78, which was late maturing, susceptible to lodging and SMV and with large seed size and green cotyledon, and Peking which was tolerant to lodging and with small seed size. The preliminary, advanced and regional yield trials for evaluation and selection of this variety were carried out from 2002 to 2006. It has determinate growth habit, white flower, brown pubescence, brown pod color, black seed coat, green cotyledon, elongated flattened seed shape, oval leaf shape and small seed size (15.7 grams per 100 seeds), and it was 3 days later in maturity than the check cultivar Cheongjakong. Socheong was higher, in the seed quality of sucrose and total sugar contents (6.8 and 8.2%) and isoflavone contents (1,754 ㎍/g) than the check cultivar. Futhermore, it has good characteristics for mechanical harvest, such as lodging tolerance, pod shattering and stem diameter. It also has been identified to have resistance to soybean mosaic virus symptom which was the troublesome soybean diseases. The average yield of Socheong was 2.21 ton per hectare in the regional yield trials carried out in four locations of Korea among seven locations from 2004 to 2006, which was 5 percent lower than the check cultivar Cheongjakong.
        1 2 3