Toll-like receptor 4 (TLR4) is known to contribute to the modulation of insulin resistance and systemic inflammation seen in obesity and the metabolic syndrome. The present study was performed to investigate the fertility competence of TLR4 knock out male mice (TLR4 mice) on a high-fat diet (HFD), compared to a normal-chow diet (NCD). The controls included wildtype (WT) mice fed on a HFD or NCD. Six-week-old male mice were fed with either a NCD or HFD for 20 weeks. Body and organ weights, serum levels of glucose, triglycerides and hepatoxicity, sperm quality and spermatogenesis were observed after the sacrifice. Also, randomly selected male mice were mated with virgin female mice after feeding of 19 weeks. The weight of the body and organs increased in WT and TLR4 mice on a HFD compared to those of mice on a NCD. The weights of the reproductive organs did not vary among the treatment groups. The motility and concentration of the epididymal spermatozoa decreased in both WT and TLR4 mice fed a HFD. The pregnancy rate and litter size declined in the HFD-fed WT mice compared to the HFD-fed TLR4 mice. In conclusion, the HFD alters energy and steroid metabolism in mice, which may lead to male reproductive disorders. However, fertility competence was somewhat restored in HFD-fed TLR4 male mice, suggesting that the TLR4 is involved in testis dysfunction due to metabolic imbalance.
Grapevine leaf rust (GLR) caused by Phakopsora euvitis results in the reduction of fruit quality and yield loss in grape production. The purpose of this study was to investigate the expression of genes related with defense responses in the grapevines infected with rust pathogens. In two genotypes of Ampelopsis species inoculated with P. euvitis, the real-time PCR with RNAs was performed to investigate transcripts levels of nine defense-related genes, including pathogenesis-related 1 (PR1), β-1,3glutannase (Glu), chitinase (Chi), superoxide dismutases (SOD), glutathione peroxidase (GPX), phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), stilbene synthase 1 (STS1), and resveratrol O-methyltransferase (ROMT). All tested genes were upregulated in YG11030 as well as YG10075, while mostly the expression of genes was higher in YG10075 than that in YG11030. Glu and STS showed significantly high expression in YG10075 than in YG11030. Expression of ROMT was upregulated in YG11030 and downregulated in YG10075 at 24 hours after inoculation. The differential expression pattern of the tested genes seems to be related with the defense responses, considered to be involved in plant-resistant responses against the infection by P. euvitis, and further studies on resistant responses based on the expression of genes would provide valuable information in breeding grapes resistant to diseases.
Humic substances that can be obtained from coal resources such as leonardite in a bulk scale have been employed as crop stimulators and soil conditioners. The polymeric organics containing a variety of aromatic and aliphatic structures are known to activate plants in a multifunctional way, thus resulting in enhanced germination rate and abiotic stress resistance concomitant with induction of numerous genes and proteins. Although detailed structural-functional relationship of humic substances for plant stimulations has not been deciphered yet, cutting-edge analytical tools have unraveled critical features of humic architectures that could be linked to the action mechanisms of their plant stimulations. In this review article, we introduce key findings of humic structures and related biological functions that boost plant growth and abiotic stress resistance. Oxygen-based functional groups and plant hormone-like structures combined with labile and recalcitrant carbon backbones are believed to be critical moieties to induce plant stimulations. Some proteins such as HIGH-AFFINITY K+ TRANSPORTER 1, phospholipase A2 and H+-ATPase have been also recognized as key players that could be critically involved in humic substance-driven changes in plant physiology.
Entomopathogenic fungi have been widely studied for their potential as the effective biological control agents. Theyproduce variety of secondary metabolites with insecticidal activities, and it is reasonable to assume that entomopathogenicfungi might produce secondary metabolites modulating juvenile hormone for their survival against defense mechanismsof host insect. In this study, Acetone extracts of 189 entomopathogenic fungi cultured on unpolished rice medium werescreened for their juvenile hormone antagonist (JHAN) activities using the yeast-two hybrid system. Among them, 14extracts showed high level of JHAN activities and their insecticidal activities against Aedes albopictus were investigated.
Yi, So Young. 2017. “Social and stylistic variation in vowel raising in Seoul Korean”. The Sociolinguistic Journal of Korea 25(3). 165~197. The purpose of this study is to examine extralinguistic factors that influence vowel raising of /o/ in constituent-final -ko and -to in Seoul Korean, focusing mainly on the influence of social variations and stylistic variations on this phenomenon. The Sociolinguistic interview data showed that older speakers used the most raised variant of /o/ in the AP-medial position, which is evidence for age-grading for the following reasons: (i) the linguistic marketplace, which is an important concept in age-grading, supports this idea because older people use the non-standard form of /o/, which is the raised variant, after they leave the workforce, and (ii) the unraised variant does not push out the raised variant, but rather, they co-exist. In addition, stylistic variations related to the formality of the speech setting and the solidarity between interactants affect the vowel, leading to vowel raising (i) in casual speech situation and (ii) in interaction with an addressee with whom the speaker is intimate; these trends are especially salient for younger speakers.
Recently, Bacillus thuringiensis (Bt) cry genes encoding insecticidal Cry proteins have been widely applied for the construction of transgenic crops resistant to insect pests. This study aimed to construct novel mutant cry1Ac genes for genetically modified crops with enhanced insecticidal activities. Using multi-site directed mutagenesis, 34 mutant cry1Ac genes were synthesized and converted at 24 amino acid residues, located on domain I (8 residues) and domain II (16 residues). These mutant genes were expressed as a fusion protein with polyhedrin using the baculovirus expression system. The expressed proteins were occluded into polyhedra and activated stably to 65 kDa by trypsin. Among these, Mut-N04, N06, and N16 showed high levels of insecticidal activites against larvae of Plutella xylostella, Spodoptera exigua, and Ostrinia furnacalis. Mut-N16, which showed the highest insecticidal activity, is expected to be a desirable cry gene for introduction into transgenic crops. This study could provide useful means to construct mutant cry genes with improved insecticidal activities and expanded host spectrum for transgenic crops.
Germplasm collection of lily in the mountainousarea is laborious and time consuming accompanied withhigh costs and high risk due to inappropriate environmentalconditions. Cryopreservation being an ideal method for thelong-term preservation can be employed in conservation ofvaluable lily germplasm. Previously, we developed cryo-preservation protocol for Lilium germplasm using ‘dropletvitrification’. In this paper, we have chosen shoot tips as amaterial for cryopreservation because of their genetic safetyupon regrowth in tissue culture. Using this protocol, wehave preserved approximately 160 accessions of lily germ-plasm in 2010~2012. The regeneration rates are rangedfrom 54.3% to 58.5% while the survival rates were from58.3% to 66.4%. Among Lilium germplasm cryopreserved,there are some Korean, Chinese, and Taiwanese seedstocks which have good qualities for inter-species hybrid.Moreover, we also conserved Korean wild endangered seedstock, especially Lilium hansonii. The morphological studyof Lilium germplasm regenerated from cryopreserved mate-rial confirmed the stability of clonal material following cryo-preservation. We anticipate this cryo-collection will beavailable and useful to curators or breeders of Lilium andthis cryobank will also facilitate the conservation and inter-national exchange of Lilium germplasm.
Sacbrood virus (SBV) is one of the most fatal pathogens against Asian honeybee, Apis cerana. This virus cause failure of the insect larvae to pupate and death of the adult insects. This study has analyzed the host genes affected by viral infection, by comparing the expression level of host transcripts infected with or without SBV. As a first step, we sequenced the cDNA libraries of Asian honeybee by using illumina RNA sequencing. The sequences were de novo assembled to acquire honeybee transcriptome sequences. The transcriptome was annotated by the sequence comparison to known protein sequences by BLASTX and evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) database with functional categories and description. By mapping the RNA-seq data to de novo assembled transcripts, we characterized the differentially expressed transcripts between SBV-infected and non-infected Asian honeybee.
Plasmids are crucial for determining the pathogenicity and host range of organisms of the Bacillus thuringiensis strains. In this research, a novel serogroup of B. thuringiensis serovar mogi (H3a3b3d), which showed mosquitocidal activity against Anopheles sinensis and Culex pipiens pallens, was isolated from fallen leaves in Mungyeong city, Republic of Korea. In contrast to the complicated plasmid profiles of B. thuringiensis H3 serotype strains, the B. thuringiensis serovar mogi contained two megaplasmids (> 30 MDa) on which the toxin genes were occasionally located. Sequence analysis using 454-pyrosequencing revealed that there are 7 putative cry genes, cry19Bb1, cry73Aa, cry40orf2, cry20Bb1, cry27Ab1, cry56Ba1 and cry39orf2, distributed on the two different megaplasmids, respectively. These cry genes were cloned to the Escherichia coli-B. thuringiensis shuttle vector, pHT1K under the control of its own promoter and p1KSD, which is a recombinant expression vector containing cyt1Aa promoter combined with the STAB-SD sequence, and then introduced into an acrystalliferous B. thuringiensis Cry-B strain for further molecular characterization. To investigate the role of these genes in crystal production, the expression profiles of these toxin genes were analyzed by quantitative PCR (qPCR) from the wild type strain. These results clearly indicate that the cry39orf2 was the dominant ingredient in the crystal. This novel 3a3b3d type strain, B. thuringiensis serovar mogi, could be used as a good resource for studying unknown mosquitocidal cry genes.
ORF78 (ac78) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a baculovirus core gene of unknown function. To determine the role of ac78 in baculovirus life cycle, an ac78-deleted mutant AcMNPV, Ac78KO, was constructed. Quantitative PCR analysis revealed that ac78 is a late gene in the viral life cycle. After transfection into Spodoptera frugiperda cells, Ac78KO produced a single-cell infection phenotype indicating that no infectious budded viruses (BVs) were produced. The defection in BV production was also confirmed by both viral titration and Western blot. However, viral DNA replication is unaffected. Analysis of BV and occlusion derived virus (ODV) revealed that AC78 is associated with both forms of the virions and is a structural protein located to viral envelope. Electron microscopy showed that ac78 also plays an important role in embedding of ODV into occlusion body. This study therefore demonstrates that AC78 is a late virion associated protein and is essential for the viral life cycle.
ORF11 (ac11) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a highly conserved gene of unknown function. To determine the role of ac11 in baculovirus life cycle, an ac11-knockout mutant AcMNPV, Ac11KO, was constructed. qPCR analysis revealed that ac11 is an early gene in the life cycle. After transfection into Spodoptera frugiperda cells, Ac11KO produced a single cell infection phenotype indicating that no infectious budded viruses (BVs) were produced. The defection in BV production was confirmed by both viral titration and Western blot. However, viral DNA replication is unaffected. Electron microscopy showed that ac11 is required for nucleocapsids envelopment to form ODV and their subsequent embedding into OB. This study therefore demonstrates that ac11 is an early gene which is essential for the viral life cycle.
Crystals of proteinaceous insecticidal proteins, Cry proteins, produced by Bacillus thuringiensis (Bt) have been generally used to control insect pests. In this study, through the 3D structure prediction and accompanying mutagenesis study for the Mod-Cry1Ac, 7 and 16 amino acid residues from domain I and II, respectively, responsible for its insecticidal activity against larvae of Spodoptera exigua and Ostrinia furnacalis were identified. To construct novel cry genes with enhanced insecticidal activity, we randomly mutated these 23 amino acid sequences by in vitro muti site-directed mutagenesis, resulting in totally 24 mutant cry genes. For further characterization, these mutant cry genes were expressed as a fusion protein with polyhedrin using baculovirus expression system. SDS-PAGE analysis of the recombinant polyhedra revealed that expressed Cry proteins was occluded into polyhedra and activated stably to 65 kDa by trypsin. When the insecticidal activities of these mutant Cry proteins against to larvae of P. xylostella and S. exigua were assayed, they showed higher or similar insecticidal activity compared to those of Cry1Ac and Cry1C. Especially, among them Mutant-N16 showed the highest insecticidal activity against to both of P. xylostella and S. exigua. Therefore, Mutant-N16 is considered to have the potential for the efficacious biological insecticide.
Among hemipteran insects which is the most important insect vector of plant viruses, small brown planthopper, Laodelphax striatellus, transmits the rice stripe virus (RSV) causing rice stripe disease. For effective control of RSV, it is important to understand interaction between RSV and L. striatellus. Therefore, in this study, expressed sequence tag (EST) databases were generated based on 454 GS-FLX pyrosequencing for comparative transcriptome analysis between nonviruliferous and RSV-viruliferous L. striatellus. By comparing the two EST libraries, we showed that 108 host genes were significantly up-regulated and 28 host genes were significantly down-regulated in viruliferous insects. Interestingly, genes encoding ribosomal proteins were mainly up-regulated in viruliferous L. striatellus, whereas genes related to translation were concentrated in the downregulated cohort. These RSV-dependently regulated genes may have important function in the behavior of planthopper or the transmission of RSV.
Bacillus thuringiensis serovar mogi of a novel serogroup (H3a3b3d), which showed mosquitocidal activity against Anopheles sinensis and Culex pipiens pallens, was isolated from fallen leaves in Mungyeong city, Republic of Korea. In contrast to the complicated plasmid profiles of B. thuringiensis H3 serotype strains, the B. thuringiensis serovar mogi contained only megaplasmid (> 30 MDa) on which the toxin genes were occasionally located. Sequence analysis using 454-pyrosequencing revealed that the megaplasmid harbored at least seven putative cry genes, showing about 84%, 75%, 73%, 58%, 84%, 39% and 75% similarities in amino acid sequences with Cry27Aa, Cry19Ba, Cry20-like, Cry56Aa, Cry39ORF2, Cry8Ba and Cry40ORF2, respectively. These cry genes were cloned to the Escherichia coli-B. thuringiensis shuttle vector, pHT1K, and then introduced into an acrystalliferous B. thuringiensis Cry-B strain for further molecular characterization. To investigate the role of these genes in crystal production, the expression profiles of these toxin genes were analyzed by quantitative real-time PCR (qrtPCR) from the wild type strain as well as transformant strains. The results clearly indicate that the cry39orf2 was the dominant ingredient in the crystal. This novel 3a3b3d type strain, B. thuringiensis serovar mogi, could be used as a good resource for studying unknown mosquitocidal cry genes.
The baculovirus expression system is one of the most popular methods used for the production of recombinant proteins but has several complex steps which have proved inherently difficult to meet a multi-parellel process. We have developed a novel recombinant bacmid, bEasyBm that enabling easy and fast generation of pure recombinant virus without any purification step. In the bEasyBm, attR recombination sites were introduced to facilitate the generation of recombinant viral genome by in vitro transposition. Moreover, extracellular RNase gene from bacillus amyloliquefaciens, barnase, was expressed under the control of Cotesia plutellae bracovirus early promoter. Therefore, only when the barnase gene was replaced to gene of interest, the bEasyBm could replicate in host insect cells. When the bEasyBm was transposed with pDualBac-EGFP and pDualBac-LUC respectively, there were no non-recombinant backgrounds were detected from unpurified BmEasy-EGFP or BmEasy-LUC stocks. In addition, the resulting recombinant virus, BmEasy-EGFP, showed comparable level of EGFP expression efficiency with the plaque-purified recombinant virus, BmEGFP, which was constructed using bBmGOZA system. Based on these results, high-throughput condition for generation of multiple recombinant viruses in a time was established.
Varieties of Bacillus thuringiensis (Bt) crystal proteins, Cry proteins, have so far been found as one of the most successful biological control agents which are safe to natural environments for a long time. Recently, cry genes encoding these Cry proteins have been widely applied for construction of transgenic crops resistant to pest insects. In this study, through the 3D structure prediction and accompanying mutagenesis study for the Mod-Cry1Ac, 7 and 16 amino acid residues from domain I and II, respectively, responsible for its insecticidal activity against larvae of Spodoptera exigua and Ostrinia furnacalis were identified. To construct novel cry genes with improved insecticidal activity, we randomly mutated these 23 amino acid sequences by in vitro muti site-directed mutagenesis, resulting in totally 24 mutant cry genes. For further characterization, these mutant cry genes were expressed as a fusion protein with polyhedrin using baculovirus expression system. SDS-PAGE analysis of the recombinant polyhedra revealed that expressed Cry proteins was occluded into polyhedra and activated stably to 65 kDa by trypsin. In the further study, we plan to investigate their insecticidal activity against Plutella xylostella, S. exigua and O. furnacalis larvae.