간행물

한국초지조사료학회지 KCI 등재 Journal of The Korean Society of Grassland Science

권호리스트/논문검색
이 간행물 논문 검색

권호

Vol. 38 No. 3 (2018년 9월) 9

Research papers

1.
2018.09 구독 인증기관 무료, 개인회원 유료
The objective of this study was to determine the effect of injection application of pig slurry on ammonia (NH3) and nitrous oxide (N2O) emission from timothy (Phleum pretense L.) sward. The three treatments were applied: 1) only water as a control, 2) pig slurry application by broadcasting, 3) pig slurry application by injection. The pig slurry was applied at a rate of 200 kg N ha-1. Total NH3 and N2O emission, expressed as a cumulative amount throughout the measurement time (40 days), was 2.68 kg NH3-N ha-1 and 6.58 g N2O-N ha-1, respectively, in the control. The injection application of pig slurry decreased total NH3 and N2O emission by 39.8% and 33.3%, respectively, compared to broadcasting application of pig slurry. The present study clearly showed that injection application exhibited positive roles in reducing N losses through NH3 and N2O emission.
4,000원
2.
2018.09 구독 인증기관 무료, 개인회원 유료
This study was conducted to determine grazing intensity of growing Korean native goats(Capra hircus coreanae) on mountainous pasture. It was carried out to obtain basic information for improvement of mountainous pasture management and establishing feeding system of Korean native goat. A total of 20 goats were grouped by feeding systems [A mountainous pasture grazing group (Concentrated feed of 1.5% body weight, treatment 1, T1, n=10) and a barn feeding group (TMR, treatment 2, T2), n=10] to conduct study from April to September. The average forage productivity of the mountain pasture was 500.9 ± 61.41 kg/ha. The average dry matter intake in T1 was 0.64 and the calculated grazing intensity was 21 head/ha. In productivity, when the two treatments(T1, T2) were compared, the dry matter intake was about two to three times the difference. The average daily gain per day during the experiment was 63.3 in the mountain pasture and 120 g in barn feeding. When grazing, considering mountainous pasture productivity it is necessary to increase the productivity through proper feeding. The feed costs of black goats raised by grazing on the grassland in the same period showed an average 75% reduction compared to barn feeding. As a result of this study, it can be expected that a considerable reduction of feed costs can be expected in the breeding of Korean native black goat using the mountain pasture.
4,000원
3.
2018.09 구독 인증기관 무료, 개인회원 유료
Pesticide application in agriculture provides significant benefits such as protection from disease, prevention of harmful insects, and increased crop yields. However, accurate toxicological tests and risk assessments are necessary because of many related adverse effects associated with pesticide use. In this review, we discuss and analyze residual pesticides contained in livestock feed in Korea. A pesticide residue tolerance standard for livestock feed has not been precisely established; so, risk assessments are required to ensure safety. Standards and approaches for animal criteria and appropriate methods for evaluating residual pesticides are discussed and analyzed based on technology related to animal product safety in Korea. The safety of livestock feed containing pesticides is assessed to establish maximum residue limits relative to pesticides. Analysis of residual pesticides in milk, muscle, brain, and fat was performed with a livestock residue test and safety evaluation of the detected pesticide was performed. Efficacy of organic solvent extraction and clean-up of feed was verified, and suitability of the instrument was examined to establish if they are effective, rapid, and safe. This review discussed extensively how pesticide residue tolerance in livestock feed and hazard evaluation may be applied in future studies.
4,000원
4.
2018.09 구독 인증기관 무료, 개인회원 유료
The main objective of this experiment was to investigate effects of two different feeding systems on body weight, milk yield, milk composition, and mineral and fatty acids content of Holstein dairy cows’ milk. Sixteen of 25 months-old Holstein dairy cows were assigned to two groups (n=8) to study effects of the feeding system for 150 days. Two feeding systems were compared for five months; Group 1 was housed indoors and mainly fed a concentrate diet, Group 2 was maintained outdoors for five-seven hours/day on various kinds grass in a pasture. The experiment was conducted June-October 2017. Results revealed the indoor-fed cows had higher body weight, that was significant compared with the outdoor-based feeding system of Holstein dairy cows (p<0.05). Indoor-raised milking cows had higher milk yield (32.45 kg) as compared with pasture-raised milk yield (26.44 kg). Cows fed indoors significantly increased milk yield, total protein content, lactose, citric acid level, and lowered level of total solid and free fatty acids relative to the pasture-fed milking cows (p>0.05). There were higher levels of mineral content and fatty acid content in the milk of indoor-fed dairy cows than the pasture-raised dairy cows (p>0.05). Our study results demonstrated the potential benefits of the indoor feeding system for increased body weight, milk yield, mineral and fatty acids content summer through autumn when low pasture growth rates and quality may otherwise limit production.
4,000원
5.
2018.09 구독 인증기관 무료, 개인회원 유료
Environmental stresses caused by climate change, such as high temperature, drought and salinity severely impact plant growth and productivity. Among these factors, high temperature stress will become more severe during summer. In this study, we examined physiological and molecular responses of maize plants to high temperature stress during summer. Highest level of H2O2 was observed in maize leaves collected July 26 compared with June 25 and July 12. Results indicated that high temperature stress triggers production of reactive oxygen species (ROS) in maize leaves. In addition, photosynthetic efficiency (Fv/Fm) sharply decreased in leaves with increasing air temperatures during the day in the field. RT-PCR analysis of maize plants exposed to high temperatures of during the day in field revealed increased accumulation of mitochondrial and chloroplastic small heat shock protein (HSP) transcripts. Results demonstrate that Fv/Fm values and organelle-localized small HSP gene could be used as physiological and molecular indicators of plants impacted by environmental stresses.
4,000원
6.
2018.09 구독 인증기관 무료, 개인회원 유료
Humic substances that can be obtained from coal resources such as leonardite in a bulk scale have been employed as crop stimulators and soil conditioners. The polymeric organics containing a variety of aromatic and aliphatic structures are known to activate plants in a multifunctional way, thus resulting in enhanced germination rate and abiotic stress resistance concomitant with induction of numerous genes and proteins. Although detailed structural-functional relationship of humic substances for plant stimulations has not been deciphered yet, cutting-edge analytical tools have unraveled critical features of humic architectures that could be linked to the action mechanisms of their plant stimulations. In this review article, we introduce key findings of humic structures and related biological functions that boost plant growth and abiotic stress resistance. Oxygen-based functional groups and plant hormone-like structures combined with labile and recalcitrant carbon backbones are believed to be critical moieties to induce plant stimulations. Some proteins such as HIGH-AFFINITY K+ TRANSPORTER 1, phospholipase A2 and H+-ATPase have been also recognized as key players that could be critically involved in humic substance-driven changes in plant physiology.
4,000원
7.
2018.09 구독 인증기관 무료, 개인회원 유료
The present study was conducted to evaluate the effects of high levels of nutrients on the growth performance, blood metabolites and carcass characteristics of Hanwoo cattle. Eighteen Hanwoo steers were fed two types of diets: 1) Nine animals were fed the conventional diet including typical levels of crude protein (CP) and total digestive nutrients (TDN), and 2) Nine animals were fed the treatment diet including high levels of CP and TDN. The average body weight (BW) and dry matter intake (DMI) were greater (P < 0.05) in the treatment group than in the conventional group at early and late fattening stages. Also, in the treatment group, the average daily gain (ADG) was greater (P < 0.05) at the late fattening stage. The serum total lipid and cholesterol levels were higher (P < 0.05) in the late fattening stage of treatment group. The carcass weight, total fat weight, longissimus muscle area and the grade of meat quality were also greater (P < 0.05) in the treatment group than the conventional diet group. This study demonstrates that high levels of CP and TDN exhibit a positive effect on the growth performance and carcass characteristics, indicating that high levels of CP and TDN can be used as a cost-effective feeding program for Hanwoo cattle by shortening the feeding period.
4,000원
8.
2018.09 구독 인증기관 무료, 개인회원 유료
Cold, salt and heat are the most critical factors that restrict full genetic potential, growth and development of crops globally. However, clarification of genes expression and regulation is a fundamental approach to understanding the adaptive response of plants under unfavorable environments. In this study, we applied an annealing control primer (ACP) based on the GeneFishing approach to identify differentially expressed genes (DEGs) in Italian ryegrass (cv. Kowinearly) leaves under cold, salt and heat stresses. Two-week-old seedlings were exposed to cold (4°C), salt (NaCl 200 mM) and heat (42°C) treatments for six hours. A total 8 differentially expressed genes were isolated from ryegrass leaves. These genes were sequenced then identified and validated using the National Center for Biotechnology Information (NCBI) database. We identified several promising genes encoding light harvesting chlorophyll a/b binding protein, alpha-glactosidase b, chromosome 3B, elongation factor 1-alpha, FLbaf106f03, Lolium multiflorum plastid, complete genome, translation initiation factor SUI1, and glyceraldehyde-3-phosphate dehydrogenase. These genes were potentially involved in photosynthesis, plant development, protein synthesis and abiotic stress tolerance in plants. However, this study provides new insight regarding molecular information about several genes in response to multiple abiotic stresses. Additionally, these genes may be useful for enhancement of abiotic stress tolerance in fodder crops as well a crop improvement under unfavorable environmental conditions.
4,000원
9.
2018.09 구독 인증기관 무료, 개인회원 유료
Soil is the main nitrogen (N) provider for plants but N in soil is not all available to advanced plants. Mineralization is a critical biological process for transferring organic N to inorganic N that can be used by plants directly. To investigate the effect of different levels of soil temperature and water content to soil mineralization, a field experiment was established on three different sites (A, B and C). We measured soil temperature, moisture and electrical conductivity once daily after swine slurry application. Average soil moisture and temperature in site A is the highest among three sites (40.9% and 9.7°C, respectively). Following is in site C (37.3% and 9.6°C) and the lowest is in site B (28.0% and 9.0°C). Ammonium N (NH4+-N) and nitrate N (NO3--N) were determined on the first and fifth day after treatment. Compared with site B and C, site A always had the highest soil total N content (1.54 g N kg-1 on day one; 1.22 g N kg-1 on day five) and highest NO3-- N content (93.18 mg N kg-1 on day one; 16.22 mg N kg-1 on day five) and a significant decrease on day five. Content of NH4+-N in site B and C reduced while in site A, it increased by 6.7%. Results revealed that net N mineralization positively correlated with soil temperature (P<0.5, r=0.675*) and moisture (P<0.01, r=0.770**), suggesting that to some extent, higher soil moisture and temperature contribute more to inorganic N that can be used by plants.
4,000원