본 연구는 피복자재와 전기발열체에 의한 포도 유목의 휴면기와 수액이동기 꽃눈 피해를 경감하기 위하여 수행하였다. 1. 저온 환경제어시스템에서 보온력 차이는 볏짚 +부직포 > 부직포 > 볏짚 > 무피복 순으로 높았으며, 볏짚 +부직포 2중피복에서 온도 저하 지연 효과가 가장 좋았으나, 12시간 처리에서는 피복자재별 보온력 차이가 거의 없었다. 2. 휴면기 꽃눈 피해는 캠벨얼리와 MBA가 비슷하였으며, 거봉에서 높았고, 무피복 > 볏짚 > 부직포 > 볏짚 +부직포 순으로 낮았다. 볏짚 +부직포는 −20℃ 6시간 저온처리부터 꽃눈 피해가 발생하여 보온 효과가 높았다. 3. 수액이동기 –10℃ 저온처리에서 꽃눈 피해는 휴면기와 비슷한 경향이었으며, 품종 간에는 차이가 없었으며, 휴면이타파된 수액이동기 저온에서 꽃눈 피해가 더 크다. 4. 전기발열체 +부직포는 −5℃ 3시간 처리에서 휴면기 –20℃에서 −4.8℃, 수액이동기는 −10℃에서 −4.3℃ 주간부 내부온도가 유지되어 방한에 효과적이었다. 5. 짚 +부직포은 휴면기에는 꽃눈 피해가 발생하는데 지연 효과가 있으나 수액이동기에는 효과가 적었으며, −5℃ 설정 전기발열체 +부직포에서는 꽃눈 피해가 발생하지 않았다.
본 연구는 ‘피오네’ 포도 무핵재배 생력화를 위한 생장조정제 이용과 착과량 조절이 과실의 특성과 품질에 미치는 영향을 구명하고자 실시하였다. 착과량 조절에 의한 과방중은 신초당 70립/1송이로 하였을 때, 681.6 g으로 가장 무거웠으며,35립/2송이에서 가장 낮은 결과를 나타냈다. 과립중은 신초당50립/1송이에서 10.1 g으로 가장 높은 결과를 보였던 반면, 송이수 및 착립수가 많을수록 낮아졌다. 품질은 신초당 50립/1송이에서 당도는 17.3 oBrix로 다른 처리구에 비해 유의하게높았고, 안토시아닌, 명도, 적색도 등도 좋았다. 수확기는 농가관행 70립/1송이 처리구의 8월 하순 대비 50립/1송이 처리구에서는 8월 상순으로 20일 정도 단축되었다. 이로서 신초당50립/1송이의 500 g 정도의 착과량 조절이 상품성 향상에 적정하였다. 무핵 생력화를 위한 GA3 + TDZ 혼용 1회 처리에서 과방중은 TDZ 농도가 높을수록 무거운 경향을 보였으며, 대조구 568.9 g 대비 모든 처리구에서 낮은 과방중을 보였으나,GA325 mg·L−1 + TDZ 10 mg·L−1처리 구에서 상품성을 향상할수 있었다. GA3에 CPPU와 TDZ 혼용 2차 처리의 경우, 과방중은 처리 농도가 높은 GA325 mg·L−1+CPPU 20 mg·L−1처리 구에서 694.2 g으로 가장 무거웠으며, GA325 mg·L−1 + TDZ 5 mg·L−1처리구와 GA325 mg·L−1+CPPU 10 mg·L−1처리 구에서 당도가 높고, 산도는 낮아 품질 면에서 상품성이 우수하였고,과립비대에 TDZ보다 CPPU의 영향을 더 잘 받는 것으로 나타났다. 전엽 5매 출현시 GA3 5 mg·L−1처리 구에서 착립밀도 개선에 노동력 절감 효과가 있음을 알 수 있었다.
Until now, seven species, Acosmeryx nega, Herpetogramma luctuosalis, Ostrinia furnacalis, Endoclyta excrescens, Spodoptera litura, Paranthrene regalis, and Nippoptilia vitis, have been known as lepidopteran grape pests in Korea (Woo, 1980; Lee, 1981; Kim, 1991; NIAST, 2002; Korea grape community, 2009). We discovered thirteen additional species belonging to eight families from Gwangwon and Chungbuk provinces, Korea. Additionally, we corrected the previous records of Deuterocopus albipunctatus and Nppoptilia vitis. They were identified by adult external or genitalic characters first, and also confirmed by the COI marker, compared with two public databases, NCBI and BOLD.
Cuticular hydrocarbons (CHCs) were analyzed using GC and GC-MS, and compared with developmental stages of the Lycorma delicatula. Total Carbon numbers on all developmental stages are 21-36, and composition numbers are 51. On the whole, Carbon numbers increased as passed times on developmental stages. Except for eggs, Lycorma delicatula consisted of n-heptacosane on almost all developmental stages, and followed by n-nonacosane. Eggs, however, consisted of 9-; 11-; 13- methylheptacosane. From the above results, CHCs on developmental stages of the Lycorma delicatula consisted of n-alkane with saturated hydrocarbons (36%), followed mono- (34%) or di- (21%) methylalkanes. Above this, CHCs consisted of tri- methylalkanes (3.9%) and olefines (2.3%) that have double bond. The major constituents of CHCs on the developmental stages of Lycorma delicatula is differently proportioned, but hardly showed the difference in their composition.
This study was carried out to investigate the effect of no-tillage on sequential cropping supported from recycling of first crop ridge on the productivity of crop and physical properties of soil under green house condition. This study is a part of “No-tillage agriculture of Korea-type on recycled ridge”. From results for distribution of soil particle size with time process after tillage, soil particles were composed with granular structure in both tillage and no-tillage. No-tillage soil in distribution of above 2 mm soil particle increased at top soil and subsoil compared with tillage soil. Tillage and one year of no-tillage soil were not a significant difference at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate. Two years of no-tillage soil was significantly increased by 8.2%, 4.5%, and 1.7% at above 0.25 mm~below 0.5 mm, above 0.5 mm~below 1.0 mm, and above 1.0 mm of water-stable aggregate, respectively, compared with one year of no-tillage. Bulk density of top soil was 1.10 MG m3 at tillage and 1.30 MG m3 at one year of no-tillage. Bulk density of top soil was 1.14 MG m3 at two years and 1.03 MG m3 at three years of no-tillage, respectively. Bulk density of subsoil was a similar tendency. Solid phase ratio in top soil and subsoil was increased at one year of no-tillage compared with tillage soil, while soil phase ratio decreased at two and three years of no-tillage. Pore space ratio in tillage top soil (58.5%) was decreased by 8.5% at compared with no-tillage soil (51.0%). Pore space ratio was 56.9% and 61.2% at two and three years of no-tillage soil, respectively. Subsoil was a similar tendency. Gaseous phase ratio was decreased at one year of no-tillage soil, and increased at two and three years of no-tillage soil compared with tillage soil. Liquid phase ratio in top soil was increased at one year of no-tillage (28.3%), and decreased at two years (23.4%) and at three years (18.3 %) of no-tillage soil compared with tillage soil (24.2%). Subsoil was a similar tendency. Liquid phase ratio in subsoil was increased than top soil.