거저리는 식품으로 사용되기 때문에 유충기가 오래 지속되면 더 좋다. 반면에 거저리의 개체수 유지를 위 해 성장을 가속화하기 위해서는 유충이 빨리 성충이 되면 더 좋다. 이 연구에서는 개체군 밀도가 거저리의 발달 시 간에 미치는 영향을 구명하였다. 이를 위해 상단 7 cm, 하단 5 cm, 높이 3 cm 크기의 용기를 사용했다. 거저리는 용기 당 1, 2, 5, 10, 20마리의 밀도로 용기에서 서식하였다. 용기에 밀기울 1 g을 넣고 거저리의 먹이 여부에 따라 라벨을 붙였다. 실험은 세 번 반복되었다. 모든 실험에서 개체군 밀도가 높을수록 유충에서 번데기로의 변환 시간이 짧았 지만 번데기에서 성충으로 변환되는 시간은 크게 다르지 않았다. 또한 먹이가 있는 그룹에서 번데기로의 변환 시간 이 단축되었지만, 성충으로 변환되는 시간에는 차이가 없었다. 이 연구 결과는 유충기를 연장하기 위해 더 낮은 밀 도가 필요하고 더 빠른 속도로 성충이 필요하다면 밀도가 더 높아야 한다는 것을 보여주었다. 결론적으로 거저리의 발달 시간은 개체수 밀도에 의해 제어할 수 있을 것이다.
High-entropy alloys (HEAs) have been reported to have better properties than conventional materials; however, they are more expensive due to the high cost of their main components. Therefore, research is needed to reduce manufacturing costs. In this study, CoCrFeMnNi HEAs were prepared using metal injection molding (MIM), which is a powder metallurgy process that involves less material waste than machining process. Although the MIM-processed samples were in the face-centered cubic (FCC) phase, porosity remained after sintering at 1200°C, 1250°C, and 1275°C. In this study, the hot isostatic pressing (HIP) process, which considers both temperature (1150°C) and pressure (150 MPa), was adopted to improve the quality of the MIM samples. Although the hardness of the HIP-treated samples decreased slightly and the Mn composition was significantly reduced, the process effectively eliminated many pores that remained after the 1275°C MIM process. The HIP process can improve the quality of the alloy.
This study prepares highly porous carbon (c-fPI) for lithium-ion battery anode that starts from the synthesis of fluorinated polyimide (fPI) via a step polymerization, followed by carbonization. During the carbonization of fPI, the decomposition of fPI releases gases which are particularly from fluorine-containing moiety (–CF3) of fPI, creating well-defined microporous structure with small graphitic regions and a high specific surface area of 934.35 m2 g− 1. In particular, the graphitic region of c-fPI enables lithiation–delithiation processes and the high surface area can accommodate charges at electrolyte/electrode interface during charge–discharge, both of which contribute electrochemical performances. As a result, c-fPI shows high specific capacity of 248 mAh g− 1 at 25 mA g− 1, good rate-retention performance, and considerable cycle stability for at least 300 charge–discharge cycles. The concept of using a polymeric precursor (fPI), capable of forming considerable pores during carbonization is suitable for the use in various applications, particularly in energy storage systems, advancing materials science and energy technologies.
This study focused on the genomic analysis of Anopheles kleini and Anopheles pullus, both vectors of vivax malaria within the Anopheles Hyrcanus group. Using Illumina NovaSeq600 and Oxford Nanopore platforms, we identified 126 and 116 contigs, along with 40,420 and 32,749 genes from An. kleini and An. pullus, respectively. The assembled genome sizes were 282 Mb for An. kleini and 247 Mb for An. pullus, which are within a similar range to the sizes previously estimated by digital PCR (249 Mb and 226 Mb). We are currently also estimating the genome sizes of other Anopheles spp. and manually curating key genes determining vectorial capacity.
Parasites have co-evolved with their host for a long period of time, resulting in unique parasitic systems tailored to each host species. This makes them suitable for research on physiological function control through cross-species molecules like miRNA. The body louse, a vector of bacterial pathogens, is particularly valuable as a model insect due to their frequent feeding on human blood, which results in the continuous ingestion of human-derived miRNA and injection of salivary gland-derived miRNA into the human body. In this study, we conducted miRNA sequencing on body lice with mixed stages and identified 105 miRNAs, including 50 novel miRNAs. Sequence analysis of human miRNAs remaining in body lice and the functional analysis of these miRNAs are in progress.
Six mosquito species in the Anopheles Hyrcanus group are known as vectors responsible for transmitting vivax malaria in South Korea. In this study, seasonal dynamics of Anopheles Hyrcanus group species and knockdown resistance (kdr) mutations in malaria-endemic sites, Paju and Gimpo, were monitored over two years. In August 2023, all six species were observed simultaneously in one of the Paju collecting sites, and kdr mutations were newly identified in all species except Anopheles kleini. Although Anopheles pullus was revealed as a relatively resistant species among five species populations without kdr mutation via bioassays, there were no critical differences in the voltage-sensitive sodium channel sequence. These findings suggest variability in pyrethroid resistance mechanisms among Anopheles Hyrcanus Group species.
Despite advancements in therapeutic approaches, radiotherapy and cisplatin-based chemotherapy remain primary noninvasive treatments for patients with oral squamous cell carcinoma (OSCC). Moreover, the 5-year survival rate for patients with OSCC has remained almost unchanged for several decades, and many side effects of chemotherapy still exist. In this study, three-dimensional (3D) models of OSCC were established using fibroblasts, and the efficacy of various biological inhibitors was evaluated. A culture of epithelial cells with two types of fibroblasts (hTERT-hNOFs and cancer-associated fibroblasts) within a type I collagen matrix resulted in the formation of a continuous layer of tightly packed cells compared to models without fibroblasts. Furthermore, the effects of biological chemicals, including Y27632, latrunculin A, and verteporfin, on these models were investigated. The stratified formation of the epithelial layer and invasion in OSCC 3D-culture models were effectively inhibited by verteporfin, whereas invasion was weakly inhibited by Y27632 and latrunculin. Collectively, the developed OSCC 3D-culture models established with fibroblasts demonstrated the potential for drug screening, with verteporfin showing promising efficacy.
Fungal contaminant in the indoor air is one of risk factors that could damage valuable paper-based records preserved in libraries. In the process of monitoring airborne fungi at the Nara Repository, the National Archives, Seoul, Korea, three fungal strains, DUCC 16098, DUCC 17764, and DUCC17767 were isolated from the archive’s air samples. Fungal identification was performed based on the morphological characteristics and phylogenetic analysis of the internal transcribed spacer (ITS), the 28S LSU rDNA, and β-tubulin gene (BenA), and TEF1-α gene. These DUCC 16098, DUCC 17764 and DUCC17767 strains were identified as Clonostachys farinosa, Penicillium cosmopolitanum, and Cephalotrichum purpureofuscum. These species have not been recorded before in Korea. Information on these fungi will help the monitoring and management of airborne fungi in the archival facilities.
This study was performed to investigate immune changes by comparing the proportion and function of immune cells in the blood under high-temperature period and convalescence temperature period in Holstein dairy cows. The experiment was conducted using Holstein dairy cows of five animals per group (60 ± 20 months old, 175 ± 78 non-day) from the National Institute of Animal Science at high-temperature period (THI: 76 ± 1.2) and convalescence temperature period (THI: 66 ± 1.3). Complete blood count results showed no change in the number of immune cells between groups. In the analysis using Flow Cytometry of PBMCs, no significant differences were observed among B cells, Helper T cells, cytotoxic T cells, and γδ T cells between groups. However, there was an increase in Th17 cells producing IL-17a, while Th1 cells decreased during the convalescence temperature period. The results of gene expression analysis using qRT-PCR in PBMCs revealed an increase in IL-10 during the convalescence temperature period, while a decrease in HSP70 and HSP90 was observed. In conclusion, the increased expression of IL-10 and the decrease in HSP expression suggest the possibility of a weak recovery from heat stress. However, the lack of observed changes in B cells, T cells, and other immune cells indicates incomplete recovery from heat stress during the convalescence temperature period.
나비류는 서식 환경의 변화에 따라 발생 양상과 개체군의 군집구조가 달라지기 때문에 기후변화를 감지하는 지표종으로 이용된다. 본 연구는 2018년부터 2022년까지 5년간 한라산 아고산지역에 서식하는 나비 개체군의 분포를 파악하기 위해 영실에서 백록담까지 9개 구간을 선조사법을 이용하여 월별 조사를 실시하였다. 조사결과 확인된 나비목 곤충의 출현 종수와 개체수는 총 5과 35종 15,943개체로 나타났으며 2018년이 다른 해에 비해 가장 많은 종수와 개체수가 출현하는 것으로 확인되었다. 구간별로는 선작지왓부터 윗세오름 통제소까지 구간 (D)에서 29종, 남벽통제소부터 백록담까지 구간(H)에서 4,590개체로 가장 많은 종수와 개체수를 보였다. 우점도 지수는 A구간과 6월, 풍부도 지수는 D구간과 7월, 균등도 지수는 G구간과 7월이 각각 가장 높게 분석되었다. 종다양도 지수는 A구간이 가장 낮은 반면 그 외 구간은 상대적으로 높게 유지되었고, 월별로는 7월이 가장 높았 다. 기상자료를 바탕으로 8개의 생물기후인자를 분석한 결과 주요 출현종의 분포는 강수량과 강수 일수가 개체 수 변동에 영향을 미치는 것으로 해석되었다.
주변 국가인 태국, 캄보디아, 베트남, 라오스 등에서 벼멸구(Nilaparvata lugens)와 흰등멸구(Sogatella furcifera)를 채집하던 중, 벼멸구와 형태가 아주 유사한 이삭멸구(N. muiri)와 벼멸구붙이(N. bakeri), 그리고 흰등 멸구와 형태가 아주 유사한 흰등멸구붙이(S. kolophon), 피멸구(S. vibix) 그리고 애멸구(Laodelphax striatellus)가 동시에 채집이 되는 등 형태적 차이점이 거의 없어 전문가도 쉽게 구분하지 못하는 문제가 있음이 확인되었다. 따라서 형태가 유사한 상기 멸구류의 종 동정을 확실히 할 수 있는 PCR용 프라이머의 개발을 위해 벼멸구 및 흰등멸구의 미토콘드리아 내 COI 영역을 특이적으로 검출할 수 있는 프라이머 세트를 제작하고 종 동정 효과를 확인하였다.
Mosquitoes were collected from three different environments (urban area, migratory bird refuge, and cowshed) in Gyeoungbuk from March to November 2022. A total of 4,701 female mosqutoes were collected: 1,635 from urban area, 2,801 from migratory bird refuge, and 265 from cowshed. Among collected 9 species, Aedes vexans was the most dominant species (50.9%), followed by Culex pipiens complex (31.8%), and A. albopictus (7.1%). In urban area, C. pipiens complex was the dominant species at 75.5%, while A. vexans was the dominant species at 82.3% and 58.9% in respective migratory bird refuge and cowshed. Among 253 pools tested for flavivirus, Japanese encephalitis virus (type Ⅴ) was detected in one pool of C. orientalis collected from the migratory refuge.
해충에 이용되는 화학적 기피제는 생태계를 파괴할 수 있으며 내성을 가진 생물체로의 진화를 촉진한다. 같은 종의 생물끼리의 의사소통 수단인 페로몬을 이용하면 다른 종에게 영향을 미치지 않으면서 특정 곤충에 특이적 으로 작용하는 방충제를 제작할 수 있을 것이라 생각된다. 본 연구는 초파리(Drosophila)의 페로몬 2종류를 추출 하여 초파리의 기피도 및 유인도와 번식률을 확인하고자 한다. ℃, 광주기 12h/12h의 동일한 조건에서 사육하 며 10마리당 헥세인 10를 사용하여 암컷의 표피에서 CHC 페로몬과 수컷의 페로몬샘에서 cVA 페로몬을 추출 한다. 연령, 성별, 교배 여부에 따라 관찰통에 각각의 페로몬을 처리하여 지정구간에 분포하는 초파리의 수를 계수하여 기피도 및 유인도를 확인한다. 관병에 암수 1쌍을 투입하고 하루에 1번 선정한 페로몬을 투여하며 산란 수을 측정한다. 이 연구를 통해 CHC가 수컷 초파리에 대한 기피 효과가 있음을 확인하였으며 추출되는 수컷의 연령이 높을수록 cVA에 의한 번식률 감소가 크게 나타났다. 본 연구를 통해 페로몬을 통한 초파리의 방제 가능성 을 확인하였으므로 다른 곤충의 방제에도 적용할 수 있을 거라 기대한다. 페로몬은 생물 농축과 같은 환경적 영향이 없으며 소량으로 유의미한 결과를 도출했다는 점에서 의의가 있으며 상용화를 통해 해충에 의해 피해를 해결할 수 있을 것이라 기대한다.
As nuclear power plants are operated in Korea, low and intermediate-level radioactive wastes and spent nuclear fuels are continuously generated. Due to the increase in the amount of radioactive waste generated, the demand for transportation of radioactive wastes in Korea is increasing. This can have radiological effect for public and worker, risk assessment for radioactive waste transportation should be preceded. Especially, if the radionuclides release in the ocean because of ship sinking accident, it can cause internal exposure by ingestion of aquatic foods. Thus, it is necessary to analyze process of internal exposure due to ingestion. The object of this study is to analyze internal exposure by ingestion of aquatic foods. In this study, we analyzed the process and the evaluation methodology of internal exposure caused by aquatic foods ingestion in MARINRAD, a risk assessment code for marine transport sinking accidents developed by the Sandia National Laboratory (SNL). To calculate the ingestion internal exposure dose, the ingestion concentrations of radionuclides caused by the food chain are calculated first. For this purpose, MARINRAD divide the food chain into three stages; prey, primary predator, and secondary predator. Marine species in each food chain are not specific but general to accommodate a wide variety of global consumer groups. The ingestion concentrations of radionuclides are expressed as an ingestion concentration factors. In the case of prey, the ingestion concentration factors apply the value derived from biological experiments. The predator's ingestion concentration factors are calculated by considering factors such as fraction of nuclide absorbed in gut, ingestion rate, etc. When calculating the ingestion internal exposure dose, the previously calculated ingestion concentration factor, consumption of aquatic food, and dose conversion factor for ingestion are considered. MARINRAD assume that humans consume all marine species presented in the food chain. Marine species consumption is assumed approximate and conservative values for generality. In the internal exposure evaluation by aquatic foods ingestion in this study, the ingestion concetration factor considering the food chain, the fraction of nuclide absorbed in predator’s gut, ingestion rate of predator, etc. were considered as influencing factors. In order to evaluate the risk of maritime transportation reflecting domestic characteristics, factors such as domestic food chains and ingestion rate should be considered. The result of this study can be used as basis for risk assessment for maritime transportation in Korea.
After Fukushima nuclear power plant accident in 2011, Concerns about accident of spent fuel pool increase. In Korea, the time of saturation of spent fuel pool is coming, but regulatory measures and safety evaluation are insufficient when occurring spent fuel pool accident. Thus, it is necessary to review of spent fuel pool accident in foreign countries to establish regulatory measures and safety evaluation of spent fuel pool accident suitable for domestic spent fuel pool. Therefore, we reviewed spent fuel pool accident that occurred at Fukushima Unit 4, SONGS Unit 2 and PAKS. In Japan, spent fuel pool accident occurred at Fukushima NPP in 2011. Tsunami was cause of the accident. Station Black Out occurred at Fukushima NPP and Emergency Diesel Generator lost their functions due to Tsunami. As a result, Loss of cooling happened in spent fuel pool at Fukushima NPP. For Unit 4, wall of spent fuel pool in Unit 4 was damaged due to hydrogen explosive, so loss of coolant in spent fuel pool of Unit 4 occurred. After the accident, the temperature of spent fuel pool increases to 75°C, but there was no damage to the spent fuel. In USA, spent fuel pool accident occurred at SONGS Unit 2 in 2013. The debris of nearby ocean is cause of the accident. The debris entered the system through a damaged Salt Water Cooling pump suction strainer. The debris obstructed flow through the Component Cooling Water heat exchanger and operation of Salt Water Cooling. The maximum spent fuel pool temperature during this event was 25.6°C. It was a value that satisfied the technical specifications of the SONGS NPP. In Ukraine, spent fuel pool accident occurred at PAKS in 2003. Unintentionally opened valve of cleaning tank is cause of the accident. Loss of coolant occurred in spent fuel pool of PAKS. Due to loss of coolant, spent fuels were exposed to the vapor state atmosphere, and oxidation occurred in the cladding tube of the spent fuel that rose to 1,400°C. In this study, Review of spent fuel pool accident in major foreign countries was conducted as basic studies for establishing regulatory measures and safety evaluation of spent fuel pool in Korea. Causes of each accident were different by structure of spent fuel pools. Result of this study will be contributed to establish safety measures of spent fuel pool accident suitable for domestic spent fuel pool facility.
High-entropy alloys (HEAs) are attracting attention because of their excellent properties and functions; however, they are relatively expensive compared with commercial alloys. Therefore, various efforts have been made to reduce the cost of raw materials. In this study, MIM is attempted using coarse equiatomic CoCrFeMnNi HEA powders. The mixing ratio (powder:binder) for HEA feedstock preparation is explored using torque rheometer. The block-shaped green parts are fabricated through a metal injection molding process using feedstock. The thermal debinding conditions are explored by thermogravimetric analysis, and solvent and thermal debinding are performed. It is densified under various sintering conditions considering the melting point of the HEA. The final product, which contains a small amount of non-FCC phase, is manufactured at a sintering temperature of 1250oC.