검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 368

        221.
        2015.03 KCI 등재 서비스 종료(열람 제한)
        The feasibility of PS-D2EHPA/TBP beads prepared by immobilizing two extractants D2EHPA and TBP in polysulfone to remove Sr(II) from aqueous solution was investigated in batch system. Batch experiments were carried out to study equilibrium isotherms, kinetics, and thermodynamics. Equilibrium data were fitted using Langmuir, Freundlich, Redlich– Peterson, and Dubinin-Radushkevich equation models at temperatures of 298 K, 313 K, and 328 K. The removal capacity of Sr(II) by PS-D2EHPA/TBP beads obtained from Langmuir model was 2.41 mg/g at 298 K. The experimental data were well represented by pseudo-second-order model. The removal process of Sr(II) by PS-D2EHPA/TBP beads prepared in this study was found to be feasible, endothermic, and spontaneous.
        222.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        Removal characteristics of Cu(II) ions by solid-phase extractant immobilized D2EHPA and TBP in PVC were investigated. Cu(II) ion concentrations in the solution and removal capacity of Cu(II) ion according to operation time were compared. The lower the initial concentration of Cu(II) ion in aqueous solution was, the removal capacity of Cu(II) ion by solid-phase extractant was increased relatively. The bigger the initial concentration of Cu(II) ion was, the removal capacity of Cu(II) ion was increased relatively. The pseudo-second-order kinetics according to operation time was showed more satisfying results than the pseudo-first-order kinetics for the removal velocity of Cu(II) ion. The removal capacity of Cu(II) ion was 0.025 mg/g in aqueous solution of pH 2, but the removal capacity of Cu(II) ion was increased to 0.33 mg/g mg/g in aqueous solution of pH 4 according to increasing pH.
        223.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        The solid-phase extractant PS-D2EHPA/TBP was prepared by immobilizing two extractants D2EHPA and TBP in polysulfone (PS). The prepared PS-D2EHPA/TBP was characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal of Cu(II) from aqueous solution was investigated in batch system. The experiment data were obeyed the pseudo-second-order kinetic model. Equilibrium data were well fitted by Langmuir model and the removal capacity of Cu(II) by solid extractant PS-D2EHPA/TBP obtained from Langmuir model was 3.11 mg/g at 288 K. The removal capacity of Cu(II) was increased according to increasing pH from 2 to 6, but the removal capacity was decreased below pH 3 remarkably.
        224.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        Bioethanol was produced from Laminaria japonica hydrolystaes by sequential acidic (0.108 N HCl)/distilled water and enzymatic hydrolysis (Celluclast® 1.5 L) using Saccharomyces coreanus immobilized into/on aluminum silicate. Reducing sugar were hydrolyzed 140.5 and 122.7 mg/g-dry biomass under a acidic-enzymatic condition and a distilled waterenzymatic condition, respectively. In addition, the 8 repetition batch fermentations were carried out with the immobilized S. coreanus to verify the advantage of immobilization cell. As a result, we can obtain the ethanol of 12.1 ~ 24.3 mg/gdry biomass, and reuse the support, aluminium silicate, for 8 repetition batch fermentations without any breakdown.
        225.
        2014.11 KCI 등재 서비스 종료(열람 제한)
        Abstract PS-D2EHPA beads were prepared by immobilizing di-2-ethylhexyl-phosphoric acid (D2EHPA) with polysulfone (PSf). The removal experiments of Cu(II) and Pb(II) by the prepared PS-D2EHPA beads were conducted batchwise. The removal efficiency of Cu(II) and Pb(II) by PS-D2EHPA beads was increased with increasing pH of solution. The removal rate of Cu(II) and Pb(II) was well described by the pseudo-second-order kinetic model. The maximum removal capacity of Cu(II) and Pb(II) obtained from Langmuir isotherm were 2.58 mg/g and 12.63 mg/g, respectively. External mass transfer coefficients for the removal of Cu(II) and Pb(II) by PS-D2EHPA beads were obtained 0.61×10-2∼ 5.87×10-2 /min and 1.55×10-2∼8.53×10-2 /min, respectively and diffusion coefficients were obtained 1.32×10-4∼ 3.98×10-4 cm2/min and 1.80×10-4∼2.28×10-4 cm2/min, respectively.
        226.
        2014.10 서비스 종료(열람 제한)
        Through the analysis of load behavior for two load cases, the fixing equipment developed shows higher limit load than maximum load data sensed in site experiments, which proves that the suggested fixing equipment have higher safety.
        227.
        2014.10 서비스 종료(열람 제한)
        Through the analysis of load behavior for two fixing equipments, the suggested fixing equipment shows higher limit load than an existing fixing equipment, which proves that the suggested fixing equipment have higher safety.
        228.
        2014.10 서비스 종료(열람 제한)
        In case of Enlargement method using Post-installed Anchors, mechanical expansion anchors were resisting tensile and shear force of Modular extension structure in exist building. The purpose of this study is to investigate strength of Post-installed Anchor on 16 MPa low strength Concrete under less than standard effective depth(hef). The fracture pattern of the specimens in Pull-out tests was pull-out failure and concrete break out failure. In monotonic load shear tests the fracture pattern was steel failure of anchor and concrete break out failure.
        229.
        2014.09 KCI 등재 서비스 종료(열람 제한)
        PVA-D2EHPA/TOPO beads containing two extractants, di-(2-ethylhexyl) phosphoric acid (D2EHPA) and trioctylphoshine oxide (TOPO) were prepared for the removal of copper ions from aqueous solution. The prepared PVA-D2EHPA/TOPO beads were characterized by SEM and FT-IR. The removal characteristics of copper ions by PVA-D2EHPA/TOPO beads was investigated using batch and continuous systems. In batch experiments, the maximum removal capacity calculated from Langmuir isotherm model was 18.6 mg/g and the optimal pH was in the range of 4.5 ∼6. The continuous experiments showed that the removal capacity of copper ions increased with increasing inlet copper ion concentrations and bed heights, but decreased with increasing inlet flow rates.
        230.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        This study focused on immobilization of Saccharomyces coreanus to support materials and ethanol fermentation bythe immobilized yeast. Three porous media as support material were surveyed; synthetic zeolite, aluminum silicate andgranular activated carbon. Amount of yeast (determined by organic matter content) immobilized into/on support materialswas lowest in fermentation using aluminum silicate as supports. Glucose as substrate of ethanol fermentation was easilysorbed more than ethanol into/on 3 types of support materials. Of these, absorbed amount of glucose and ethanol into/on activated carbon was highest. The ethanol was actively produced for 16 hours in fermentation processes by yeastimmobilized into/on aluminum silicate and activated carbon, produced after 16 hours by yeast immobilized into/on zeolite.The produced ethanol concentration after 24h was as follows; 24.2g/L by using aluminum silicate, 19.3g/L by activatedcarbon and 16.1g/L by zeolite.
        231.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        This research investigated the feasibility of rice husk as a biosorbent for removal of ammonium ion from aqueous solutions. To improve the sorption functionality of rice husk, the carboxyl groups were chemically bound to the surface of the rice husk by graft polymerization of acrylic acid using potassium peroxydisulphate as a redox initiator. The removal of ammonium ion by rice husk grafted with acrylic acid (RH-g-AA) was studied in a batch mode and fixed bed columns. The kinetic and equilibrium data obtained from batch experiments follow the second-order kinetics and fit well with the Langmuir isotherm model. The sorption energy determined from D-R model was 8.61 kJ/mol indicating an ion-exchange process as the primary sorption mechanism. To determine the characteristic parameters of the column useful for process design, four mathematical models; Bed Depth Service Time (BDST), Bohart-Adams, Clark and Wolborska models were applied to experimental data obtained from the fixed bed columns with varying bed heights. All models were found to be suitable for simulating the whole or a definite part of breakthrough curves, but the Wolborska model was the best. The fixed bed sorption capacity determined from the Wolborska model was in the range 33.3 ~ 40.5 mg/g close to the value determined in the batch process. The thickness of mass-transfer zone was calculated to be approximately 40 mm from DBST model. The RH-g-AA sorbent could be regenerated by a simple acid washing process without a serious lowering the sorption capacity or physical durability.
        232.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        The solid phase extractant (PVC-D2EHPA bead) was prepared by immobilizing di-2-ethylhexyl-phosphoric acid (D2EHPA) with polyvinyl chloride (PVC). The prepared PVC-D2EHPA beads were characterized by using fourier transform infrared spectrometer (FTIR) and scanning electron microscopy (SEM). The removal experiments of Cu(II) by PVC-D2EHPA beads conducted batchwise. The removal kinetics of Cu(II) was found to follow the pseudo-second-order model. The equilibrium data fitted well with Langmuir isotherm model and the maximum removal capacity was 2.6 mg/g at 20℃. The optimum pH region was in the range of 3.5 to 6. and the standard free energy (△Go) was between –4.67 ∼–4.98 kJ/mol, indicating the spontaneous nature of Cu(II) removal by PVC-D2EHPA beads.
        233.
        2014.06 KCI 등재 서비스 종료(열람 제한)
        The adsorption experiments of lithium ions were conducted in the fixed bed column packed with activated carbon modified with nitric acid. Effect of inlet concentration, bed hight and flow rate on the removal of lithium ions was investigated. The experimental results showed that the removal and the adsorption capacity of lithium ions increased with increasing inlet concentration, and decreased with increasing flow rate. When the bed height increased, the removal and the adsorption capacity increased. The breakthrough curves gave a good fit to Bohart-Adams model. Adsorption capacity and breakthrough time calculated from Bohart-Adams model, these results were remarkably consistent with the experimental values. The adsorption capacity was not changed in the case of 3 times repetitive use of adsorbent.
        234.
        2014.06 서비스 종료(열람 제한)
        Esophagojejunostomy after total gastrectomy shows high mortality and morbidity. Complication after esophagojejunostomy was caused by constant tension on esophagojejunostomy in erect-position, resulting in disturbance of blood flow in the anastomotic site. The purpose is to evaluate efficacy of anchoring sutures. Medical charts of patients diagnosed with gastric cancer who underwent total gastrectomy from 1998 to 2008 were analyzed retrospectively. Anchoring suture between jejunum and diaphragm after esphagojejunostomy was performed in all patients. A total of 155 patients were enrolled. Esophagojejunostomy leakage 3, revision operation 2, and conservation 1. Esophagojejunostomy stenosis 1, which was improved by balloon. This procedure could protect the esophagojejunostomy site from traction force.
        235.
        2014.05 KCI 등재 서비스 종료(열람 제한)
        In order to remove fluoride ions from aqueous solution, PVC-Al(OH)3 beads were prepared by immobilizing Al(OH)3 with polyvinyl chloride (PVC). The prepared PVC-Al(OH)3 bead was characterized by using SEM, EDS and Zeta potential. Dependences of pH, contact time and initial fluoride concentration on the adsorption of fluoride ions were studied. The optimal pH was in the range of 4~10. The adsorption was rapid during the initial 12 hr, and equilibrium was attained within 72 hr. The adsorption rate of fluoride ions by PVC-Al(OH)3 beads obeyed the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir isotherm model was found to be 62.68 mg/g.
        236.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        Adsorption of phenol on activated carbon in a fixed bed was studied. The effects of fixed-bed length, superficial velocity (flow rate) and particle size of adsorbent on fixed-bed performance were investigated. Some characteristic parameters such as the breakthrough time (t0.05), saturation time (t0.95), length of mass transfer zone (LMTZ), adsorptive capacity (W), and adsorption rate constant (Ka) were derived from the breakthrough curves. Adsorbent particle sizes significantly affected the shape of the breakthrough curve. Larger particle sizes resulted in an earlier breakthrough, a longer LMTZ and a lower adsorption rate. Superficial velocity was a critical factor for the external mass transfer during fixed-bed adsorption process. The external mass transfer resistance was dominant as increasing superficial velocity.
        237.
        2014.01 KCI 등재 서비스 종료(열람 제한)
        There have been a lot of efforts to increase recycling rate by more utilization of end of life vehicles (ELVs) in Korea.The target of recycling rate was set to 85% until 2014 and 95% after 2015 with including up to 10% of energy recovery,according to the law of “regulation about resource recycling of electrical and electronic products and automobiles”.Therefore, to achieve 95% of recycling rate by the year of 2015, the automobile and recycling industries should developan innovative technology to treat automobile shredder residues (ASRs) by efficient means of reduction or conversion toenergy, which were generated as final left-over after recovering all the valuables from ELVs. As one of the options toconvert to energy forms, the gasification of them was proposed. In this study the gasification experiment was performedusing ASRs at fixed-bed reactor with a capacity of 1kg/hr, at different temperatures of 800, 1,000 and 1,200oC, and atequivalence air ratios ranging from 0.1 to 0.5. The syngas (H2+CO) yield from ASR gasification experiment was obtainedup to 86% in maximum and about 40% in minimum in the experimental conditions given. There was a trend that theamount of syngas increased with elevated temperatures and the calorific value also showed similar trend with syngasproduction.
        238.
        2013.11 KCI 등재 서비스 종료(열람 제한)
        시멘트 내 6가 크롬은 피부질환이나 암을 유발할 수 있는 유해한 인체에 유해한 이온으로 잘 알려져 있다. 본 연구에서는 사람에게 영향을 주는 시멘트 내 6가 크롬의 정량적 분석을 하고자 시멘트 및 시멘트 경화체 내 6가 크롬의 고정화에 대해 평가하였다. 국내에서 생산되는 일반 포틀랜드 시멘트 3종과 플라이애쉬, 고로슬래그 미분말, 실리카퓸을 사용하여 수용성 및 산가용성 6가 크롬을 분광광도법으로 측정하였다. 측정결과, 시멘트 내 수용성 6가 크롬의 농도는 10.5-18.9 mg/kg-cement 범위였으며 혼화재료 내 수용성 6가 크롬의 양은 매우 적게 측정되었다. 시멘트 내 산가용성 6가 크롬의 농도는 172.4-318.2 mg/kg-cement 범위로 측정되었으며 수용성 6가 크롬에 비해 증가하였다. 그러나 크롬의 pH에 의존적인 용해 특성에 따라 용매의 pH가 저감된다고 하여 산가용성 6가 크롬의 농도가 항상 크게 측정되지는 않았다. 시멘트 수화 후 수용성 6가 크롬은 2.0 mg/kg-cement 정도로 감소하였으며 이는 크롬산-에트링게이트 생성에 의한 결과임을 확인할 수 있었다.
        239.
        2013.11 서비스 종료(열람 제한)
        화석연료 고갈 및 환경문제 해결을 위한 대체 에너지원 확보에 대한 연구가 여러 분야에서 활발히 진행되고 있다. EU의 경우 신재생에너지 보급률의 80% 정도를 바이오매스로 달성하고 있을 정도로, 바이오매스는 자원의 순환적 이용과 재생산 가능한 청정에너지원으로 주목을 받고 있다. 일반적인 바이오매스는 밀도가 낮고 함수율이 높기 때문에, 바이오매스를 펠렛화하여, 연료로 사용하는 방법이 주로 이용되고 있다. 물리적인 압축을 통해 밀도를 높인 펠렛의 발열량은 약 4,000kcal/kg 정도로, 일반연료유(휘발유)의 발열량인 8,000 kcal/kg의 약 50% 정도 수준으로, 에너지밀도가 높은 바이오매스 연료 생산이 필요하다. 반탄화(Torrfaction)는 반응온도 200~300℃ 범위에서 무산소 조건에서 일어나는 열화학적인 공정으로 부분적인 탈휘발화 반응 및 열분해 반응을 통하여 에너지 밀도가 높은 탄화물을 제조하기 위한 방법이다. 본 연구에서는 실험실 규모의 고정층 반응기를 이용하여 말레이시아에서 자생하는 바이오매스 중 Leucaena를 반응시간 30분인 조건에서 반응온도를 228, 266, 290, 315 및 350℃로 변화시켜 생성된 반탄화물에 대한 기초성분 및 SEM 분석 등을 통하여, 반응온도의 영향을 검토하였다.
        240.
        2013.11 서비스 종료(열람 제한)
        폐기물, 바이오매스 가스화를 이용한 전기 생산 시스템은 화석연료 대체 및 CO₂ 배출량 감소를 위한 잠재성이 매우 뛰어난 것으로 평가되고 있다. 특히 폐기물, 바이오매스 가스화 발전 시스템은 전기의 이용 및 접근의 용이성이 뛰어나므로, 중・소규모 지역에서 이용할 수 있는 훌륭한 대안이라고 할 수 있다. 따라서 시스템을 효율적으로 이용하기 위해서는 폐기물, 바이오매스 가스화 발전시스템의 운전특성을 파악하여 성능을 개선시키는 것이 필요하다. 본 연구에서는 폐기물을 원료물질로 하고, 공기를 산화제로 이용한 가스화를 통해 생산된 합성가스를 이용하여 가스엔진과의 연계를 통해 전기를 생산하는 시스템을 개발하고자 한다. 폐기물은 가스화기 상부에서 투입되었고 산화제인 공기는 가스화기 측면에서 투입되었으며, 반응된 가스는 상부로 배출되는 고정층 방식의 반응기를 이용하였다. 발열량이 약 3,300, 3,900 kcal/kg인 폐기물을 이용하여 가스화 시스템의 합성가스 생산 특성을 파악하였다. 3,300 kcal/kg의 발열량을 가진 폐기물의 가스화 결과, 합성가스 조성이 CO 0.2~3.7%, H₂ 3.6~7.1%, CH₄ 0.9~2.3%으로 나타났으며, 안정적인 가스화가 진행되지 않았다. 3,900 kcal/kg의 발열량을 가진 폐기물의 가스화 결과, 합성가스 조성이 CO 7.9~12.1%, H₂ 7.1~8.2%, CH₄ 2.8~3.7%이며 냉가스 효율은 약 60.1%으로 안정적인 가스화가 진행되었다. 따라서 실험에 이용한 고정층 가스화기는 최소 3,300~3,900 kcal/kg이상의 열량을 가진 폐기물을 이용해야만 합성가스의 안정적인 생산이 가능하고 가스엔진 연계 발전이 가능한 것으로 도출되었다.