검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 239

        22.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Algal bloom is an ongoing issue in the management of freshwater systems for drinking water supply, and the chlorophyll-a concentration is commonly used to represent the status of algal bloom. Thus, the prediction of chlorophyll-a concentration is essential for the proper management of water quality. However, the chlorophyll-a concentration is affected by various water quality and environmental factors, so the prediction of its concentration is not an easy task. In recent years, many advanced machine learning algorithms have increasingly been used for the development of surrogate models to prediction the chlorophyll-a concentration in freshwater systems such as rivers or reservoirs. This study used a light gradient boosting machine(LightGBM), a gradient boosting decision tree algorithm, to develop an ensemble machine learning model to predict chlorophyll-a concentration. The field water quality data observed at Daecheong Lake, obtained from the real-time water information system in Korea, were used for the development of the model. The data include temperature, pH, electric conductivity, dissolved oxygen, total organic carbon, total nitrogen, total phosphorus, and chlorophyll-a. First, a LightGBM model was developed to predict the chlorophyll-a concentration by using the other seven items as independent input variables. Second, the time-lagged values of all the input variables were added as input variables to understand the effect of time lag of input variables on model performance. The time lag (i) ranges from 1 to 50 days. The model performance was evaluated using three indices, root mean squared error-observation standard deviation ration (RSR), Nash-Sutcliffe coefficient of efficiency (NSE) and mean absolute error (MAE). The model showed the best performance by adding a dataset with a one-day time lag (i=1) where RSR, NSE, and MAE were 0.359, 0.871 and 1.510, respectively. The improvement of model performance was observed when a dataset with a time lag up of about 15 days (i=15) was added.
        4,000원
        23.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to compare short-term price predictive power among ARMA ARMAX and VAR forecasting models based on the MDM test using monthly consumer price data of frozen mackerel. This study also aims to help policymakers and economic actors make reasonable choices in the market on monthly consumer price of frozen mackerel. To analyze this study, the frozen wholesale prices and new consumer prices were used as variables while the price time series data were used from December 2013 to July 2021. Through the unit root test, it was confirmed that the time series variables employed in the models were stable while the level variables were used for analysis. As a result of conducting information standards and Granger causality tests, it was found that the wholesale prices and fresh consumer prices from the previous month have affected the frozen consumer prices. Then, the model with the highest predictive power was selected by RMSE, RMSPE, MAE, MAPE, and Theil’s inequality coefficient criteria where the predictive power was compared by the MDM test in order to examine which model is superior. As a result of the analysis, ARMAX(1,1) with the frozen wholesale, ARMAX(1,1) with the fresh consumer model and VAR model were selected. Through the five criteria and MDM tests, the VAR model was selected as the superior model in predicting the monthly consumer price of frozen mackerel.
        4,900원
        24.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.
        4,200원
        26.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Rut depth of asphalt pavements is a major factor that affects the maintenance of pavements as well as the safety of drivers. The purpose of this study was to analyze the factors influencing rut depth, using data collected periodically on national highways by the pavement management system and, consequently, predict annual rut depth change, to contribute to improved asphalt pavement management. METHODS : The factors expected to influence rut depth were determined by reviewing relevant literature, and collecting the related data. Further, the correlations between the annual rut depth change and the influencing factors were analyzed. Subsequently, the annual rut depth change model was developed by performing regression analysis using age, present rut depth, and annual average maximum temperature as independent variables. RESULTS : From the sensitivity analysis of the developed model, it was found that age affected the annual rut depth change the most. Additionally, the relationship between the dependent and independent variables was statistically significant. The model developed in this study could reasonably predict the change in the rut depth of the national highway asphalt pavements. CONCLUSIONS : In summary, it was verified that the model developed in this study could be used to predict the change in the National Highway Pavement Condition Index (NHPCI), which represents comprehensive conditions of national highway pavements. Development of other models that predict changes in surface distress as well as international roughness index is required to predict the change in NHPCI, as they are the independent variables of the NHPCI prediction model.
        4,000원
        28.
        2021.05 구독 인증기관 무료, 개인회원 유료
        This study suggests a machine learning model for predicting the production quality of free-machining 303-series stainless steel small rolling wire rods according to the manufacturing process's operation condition. The operation condition involves 37 features such as sulfur, manganese, carbon content, rolling time, and rolling temperature. The study procedure includes data preprocessing (integration and refinement), exploratory data analysis, feature selection, machine learning modeling. In the preprocessing stage, missing values and outlier are removed, and variables for the interaction between processes and quality influencing factors identified in existing studies are added. Features are selected by variable importance index of lasso regression, extreme gradient boosting (XGBoost), and random forest models. Finally, logistic regression, support vector machine, random forest, and XGBoost is developed as a classifier to predict good or defective products with new operating condition. The hyper-parameters for each model are optimized using k-fold cross validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963 and logarithmic loss of 0.0209. In this study, the quality prediction model is expected to be able to efficiently perform quality management by predicting the production quality of small rolling wire rods in advance.
        4,000원
        30.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.
        4,000원
        31.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        효과적인 보호구역의 보전 관리를 위해서는 외래종의 정착 모니터링 및 확산 위험에 대한 저감 노력이 수반되어야 한다. 본 연구는 울진에 위치한 산림유전자원보호구역(2,274ha)에서 조사된 외래식물 분포 정보를 대상으로 활용도가 높은 세가지 종분포모형(Bioclim, GLM, MaxEnt)을 활용하여 외래식물의 잠재출현지역을 모의하였고, 모의 결과를 비교하여 지역적 지리 및 생태 관리 특성이 반영된 현실성 및 적합성 높은 종분포모형을 선발하였다. 분석에서 예측된 외래식물의 출현지역은 실제 분포와 같이 도로 같은 선형 경관 요소를 따라 분포하는 경향이었으며, 일부 벌채지가 포함되었다. 본 연구에서 적용한 각 모형의 예측력과 정확도를 통계적으로 비교한 결과, GLM과 MaxEnt 모형은 대체로 높은 예측력과 정확도를 보였지만, Bioclim 모형은 낮았다. Bioclim은 가장 넓은 면적을 출현예상지역으로 계산하였고, GLM, 그리고 MaxEnt 순으로 면적이 작았다. 모의 결과의 현상학적 검토에서는 GLM과 Bioclim 모형은 표본 수에 따라 예측력이 크게 영향을 받는 것으로 나타났고, 표본 수와 관계없이 가장 일관성 높은 모형은 MaxEnt로 평가되었다. 종합적으로, 본 연구에 사용된 모형 중 외래식물 분포 예측을 위한 최적 모형은 MaxEnt 모형인 것으로 판단되었다. 본 연구에서 제시한 정밀 생물종 분포 자료 기반의 모델 선발 접근 방식은 산림생태계 보호구역의 보전 관리 및 지역 특성이 반영된 현실적이고 정교한 모델 발굴 연구에 도움이 될 것이다.
        4,300원
        32.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.
        4,600원
        33.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Postal logistics organizations are characterized as having high labor intensity and short response times. These characteristics, along with rapid change in mail volume, make load scheduling a fundamental concern. Load analysis of major postal infrastructures such as post offices, sorting centers, exchange centers, and delivery stations is required for optimal postal logistics operation. In particular, the performance of mail traffic forecasting is essential for optimizing the resource operation by accurate load analysis. This paper addresses a traffic forecast problem of postal parcel that arises at delivery stations of Korea Post. The main purpose of this paper is to describe a method for predicting short-term traffic of postal parcel based on self-similarity analysis and to introduce an application of the traffic prediction model to postal logistics system. The proposed scheme develops multiple regression models by the clusters resulted from feature engineering and individual models for delivery stations to reinforce prediction accuracy. The experiment with data supplied by main postal delivery stations shows the advantage in terms of prediction performance. Comparing with other technique, experimental results show that the proposed method improves the accuracy up to 45.8%.
        4,000원
        34.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).
        4,000원
        37.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Turbidity has various effects on the water quality and ecosystem of a river. High turbidity during floods increases the operation cost of a drinking water supply system. Thus, the management of turbidity is essential for providing safe water to the public. There have been various efforts to estimate turbidity in river systems for proper management and early warning of high turbidity in the water supply process. Advanced data analysis technology using machine learning has been increasingly used in water quality management processes. Artificial neural networks(ANNs) is one of the first algorithms applied, where the overfitting of a model to observed data and vanishing gradient in the backpropagation process limit the wide application of ANNs in practice. In recent years, deep learning, which overcomes the limitations of ANNs, has been applied in water quality management. LSTM(Long-Short Term Memory) is one of novel deep learning algorithms that is widely used in the analysis of time series data. In this study, LSTM is used for the prediction of high turbidity(>30 NTU) in a river from the relationship of turbidity to discharge, which enables early warning of high turbidity in a drinking water supply system. The model showed 0.98, 0.99, 0.98 and 0.99 for precision, recall, F1-score and accuracy respectively, for the prediction of high turbidity in a river with 2 hour frequency data. The sensitivity of the model to the observation intervals of data is also compared with time periods of 2 hour, 8 hour, 1 day and 2 days. The model shows higher precision with shorter observation intervals, which underscores the importance of collecting high frequency data for better management of water resources in the future.
        4,000원
        38.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study aims to create a pleasant environment by exploring ITS technology-based reduction measures to manage vehicles on the road, which are the main cause of traffic noise, while identifying the effects of traffic noise and various noise reduction measures. METHODS : A review of the literature identified the matters discussed mainly by reviewing the pre-examination and related statutes of traffic noise management measures at home and abroad. Furthermore, in the field investigation section, the variables affecting traffic noise (traffic volume, large vehicle mix rate, and driving speed) were investigated and the noise impact was analyzed using the three-dimensional (3D) noise prediction model (SounpdPLAN). RESULTS: The noise impact levels of the 3D noise prediction model were identified from various angles, such as horizontal and vertical, and traffic noise management measures for pre-real-time management and related DB utilization measures were proposed. CONCLUSIONS: Unlike the existing traffic noise management measures, which focus on follow-up management measures, it is believed that further research is needed to develop standards and related guidelines that meet regional characteristics by taking into account the characteristics of traffic noise and creating concrete and drawing action plans that can be used in future policies using ITS technology.
        4,200원
        1 2 3 4 5