검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 70

        21.
        2016.05 서비스 종료(열람 제한)
        Background : Angelica gigas is a monocarpic biennial or short lived perennial plant. A. gigas, also called Dang Gui or Korean Angelica, is a major medicinal herb used in Asian countries such as Korea, Japan and China. In Korea, we are using the roots of A. gigas, but, they are using Angelica sinensis in China and Angelica acutiloba in Japan to obtain many active constituents. The biggest problem in the using of A. gigas would be the confusion with A. acutiloba or A. sinensis. These three plants can't be distinguished by appearance. And the constituent ratios of the three plants are different. This confusion can cause an accident or the pharmaceutical effects do not meet the expectations. In this study, we developed chloroplast SSR markers that can distinguish A. gigas, A. acutiloba and A. sinensis. Methods and Results : We collected A. gigas, A. acutiloba and A. sinensis. and extrated DNA using CTAB method. The DNA was diluted to 10 ng/㎕ and kept -20℃. We designed the primer sets using CLC Main Workbench based on chloroplast DNA SSR region of A. gigas. PCR were performed on the three angelica plant samples (in 5 repeat). Conclusion : We made five primer sets from five SSR regions of A. gigas cpDNA. All of the primer sets amplified the amplicon effectively. Two of the 5 primer sets had polymorphism. We can distinguish A. gigas, A. acutiloba, and A. sinensis using the 2 primer sets
        22.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        Background : Plants belonging to 5 species of the genus Eleutherococcus are currently distributed in the Korean peninsula. The traditional medicine ‘Ogapi’, derived from Eleutherococcus sessiliflorus and other related species, and ‘Gasiogapi’, derived from Eleutherococcus senticosus, are frequently mixed up and marketed. Therefore, accurated identification of their origins in urgently required. Methods and Results : Candidate genes from nuclear ribosomal DNA (nrDNA) and chloroplast DNA (cpDNA) of Eleutherococcus plants were analyzed. Whereas the nrDNA-internal transcribed spacer (ITS) regions were useful in elucidating the phylogenetic relationships among the plants, the cpDNA regions were not as effective. Therefore, a combined analysis with nrDNA-ITS was performed. Various combinations of nrDNA and matK were effective for discriminating among the plants. However, the matK and rpoC1 combination was ineffective for discriminating among some species. Based on these results, it was found that OG1, OG4, OG5, OG7, GS1, GS2, and GS3 were derived from E. sessiliflorus. In particular, it was confirmed that GS1, GS2, and GS3 were not derived from E. senticosus. However, more samples need to be analyzed because identification of the origins of OG2, OG3, OG6 and GS4 was not possible. Conclusion : The ITS2, ITS5a, and matK combination was the most effective in identifying the phylogenetic relationship among Eleutherococcus plants and traditional medicines based on Eleutherococcus.
        24.
        2015.07 서비스 종료(열람 제한)
        The complete chloroplast (cp) genomes of two Miscanthus species, M. sinensis and M. sacchariflorus, were sequenced and investigated for genes, genome size variation, and polymorphisms. There are 154 genes in both cp genomes, consisting of 122 coding genes, 40 tRNA genes, and 8 rRNA genes. The cp genome contains two inverted repeat (IR) regions, separated by large single copy (LSC) region and small single copy (SSC) region. 112bp indels in M. sinensis and 152bp in M. sacchariflorus were found mainly in LSC and SSC, which are responsible for 40 bp-difference in cp genome size in two species. Likewise, out of 94bp of SNPs, 88bp were found in LSC and SSC regions. Although gene number and sequence structure were quite well conserved, indel distribution and size were different in these two Miscanthus species.
        25.
        2015.07 서비스 종료(열람 제한)
        Perilla is a annual herb plant of the mint family, Laminaceae and mainly cultivated in eastern Asia, i.e. Korea, China and Japan. In response to an increased interest for healthy supplement food from the public, people are focusing on the properties of perilla. The applicable parts of perilla plants are the leaves and seeds. Perilla has been cultivated as a source of unsaturated fatty acid oil. But in spite of advantage of the important nutritional traits the genome or molecular studies on perilla remains largely unknown. Sequence comparisons of chloroplast (cp) genomes or nuclear ribosomal DNA (nrDNA) are of great important to provide a evidence for taxonomic studies or species identification or understanding mechanisms that underlie the evolution of perilla species. So, we tried to study a structural analysis of perilla genome and 45s nrDNA using 9 species (3 Diploid; Perilla B-17, P. hirtella, P. setoyensis / 6 Tetraploid; YCPL 285, YCPL 170, YCPL 205-1, YCPL 181-1, YCPL 177-1, YCPL 207-1). The complete cp genome and nrDNA of 9 perilla species were determined using Illumina sequencing technology and analyzed on the variance in base level between perilla B-17 and salvia miltiorrhiza. Total chloroplast genome size of perilla B-17 as a reference was 152,589 bp in length. We also identified an slightly overlapped intergenic regions between salvia miltiorrhiza and B-17. The results above will contribute to growing of molecular or genome structure and functional genomics of perilla available in studying perilla biology. For further study, we will look for genetic diversity of perilla species.
        26.
        2015.07 서비스 종료(열람 제한)
        Although the overall structure of the chloroplast genome is generally conserved, a number of sequence variations have been identified, which are valuable for plant population and evolutionary studies. Here, we constructed a chloroplast variation map of 30 landrace rice strains of Korean origin, using the Oryza rufipogon chloroplast genome (Genbank: NC_017835) as a reference. Differential distribution of single nucleotide polymorphisms (SNPs) and indels across the rice chloroplast genome is suggestive of a region-specific variation. Population structure clustering revealed the existence of two clear subgroups (indica and japonica) and an admixture group (aus). Phylogenetic analysis of the 30 landrace rice strains and six rice chloroplast references suggested and supported independent evolution of O. sativa indica and japonica. Interestingly, two “aus” type accessions, which were thought to be indica type, shared a closer relationship with the japonica type. One hypothesis is that “Korean aus” was intentionally introduced and may have obtained japonica chloroplasts during cultivation. We also calculated the nucleotide diversity of 30 accessions and compared to six rice chloroplast references, which shown a higher diversity in the indica and aus groups than in the japonica group in lower level substitution diversity.
        27.
        2015.07 서비스 종료(열람 제한)
        In this study, we report that the development of a multiplex PCR method using species-specific primers for the simultaneous detection of Poaceae family members, including adlay, barley, maize, rice and wheat, based on the sequence polymorphism of the DNA-directed RNA polymerase beta'' chain (rpoC2) genes Species-specific primers were constructed with common forward primer and each reverse primers which have differences on the basis of sequences. Each primer pairs could amplify PCR products of 443 bp for rice, 346 bp for barley, 278 bp for adlay, 221 bp for wheat and 96 for maize, respectively, from the five chloroplast DNAs. The series of template DNA concentrations were identified by the sensitivity of multiplex PCR. The band of products were clearly amplified from the DNA concentration range of 0.01 to 10 ng/μL. In addition, the species-specific primers were examined for the detection of seven commercial flour mixed products. The combination of the sensitivity of a multiplex PCR with the specificity of the primers for the detection of species would allow to be applied in analyses of processed foods.
        28.
        2015.07 서비스 종료(열람 제한)
        Asterales are dicotyledonous flowering plants and are one of the Asterid clade, incuding many species as well as Codonopsis and Platycodon. Here, we have determined the complete chloroplast genome sequences of C. lanceolata and P. grandiflorus by using the targeted denovo assembly method of short reads derived from whole genome resequencing. The total lengths of each chloroplast genome sequence are 156,180 bp for C. lanceolata and 155,453 bp for P. grandiflorus. In their chloroplast genomes, 106 genes (75 protein-coding genes, 4 rRNA genes, 23 tRNA genes, and 4 hypothetical chloroplast open reading frames [ycfs]) exhibited the relatively similar positions. Also, 7 protein-coding genes commonly showed to contain introns in both C. lanceolata and P. grandiflorus chloroplast genome, while psaA gene contain intragenic regions only in P. grandiflorus chloroplast genome. In further analysis, we identified the codon usage bias to A or T and found the different simple sequence repeat (SSR) loci of each chloroplast genome (18 SSR loci of C. lanceolata and 16 SSR loci of P. grandiflorus). In the phylogenetic trees based on 72 protein-coding genes, C. lanceolata is more closely related to P. grandiflorus than the other plant species order Asterales. Also, we found the highest sequence diversities of 12 protein-coding genes in small single copy (SSC) region than in the inverted repeat (IRs) and large single copy (LSC) region, and 3 genes such as rpoC2 (LSC region), ndhB (IRs region), and ndhF (SSC region) showed the highest number of segregating sites in each region. Additionally, we developed the molecular markers for phylogenetic applications of C. lanceolata and P. grandiflorus chloroplast genome.
        29.
        2015.07 서비스 종료(열람 제한)
        The chloroplast (cp) is an organelle with its own genome encoding a number of cp-specific components. The membrane-bound organelles are mainly involved in the photosynthetic conversion of atmospheric CO2 into carbohydrates in which light energy is stored as chemical energy. Resequencing technology via next-generation sequencing has recently been successfully applied which results the field of cp genome characterization is growing fast. Here, we report the complete sequence of the chloroplast genome of Capsicum frutescens, a species of chili pepper. The total length of the genome is 156,817 bp, and the overall GC content is 37.7%. A pair of 51,584-bp inverted repeats (IRs) is separated by a small (17,853 bp) and a large (87,380 bp) single-copy region. The C. frutescens chloroplast genome encodes 103 unique genes, including 79 protein-coding genes, 20 tRNA genes, and four rRNA genes. Of these, 19 genes are duplicated in the IRs and 18 genes contain one or two introns. Comparative analysis with reference cp genome revealed 125 simple sequence repeat (SSR) motif and 34 variants, mostly located in the non-coding regions. These microsatellite markers will facilitate the studies of genetic diversity, population genetic structure, and sustainable conservation for C. frutescens.
        30.
        2015.07 서비스 종료(열람 제한)
        Chloroplast (cp) genome sequences provide a valuable source for DNA barcoding. Molecular phylogenetic studies have concentrated on DNA sequencing of conserved gene loci. However, this approach is time consuming and more difficult to implement when gene organization differs among species. Here we report the complete re-sequencing of the cp genome of Capsicum pepper (Capsicum annuum var. glabriusculum) using the Illumina platform. The total length of the cp genome is 156,817 bp with a 37.7% overall GC content. A pair of inverted repeats (IRs) of 50,284 bp were separated by a small single copy (SSC; 18,948 bp) and a large single copy (LSC; 87,446 bp). The number of cp genes in C. annuum var. glabriusculum is the same as that in other Capsicum species. Variations in the lengths of LSC, SSC and IR regions were the main contributors to the size variation in the cp genome of this species. A total of 125 simple sequence repeat (SSR) and 48 insertions or deletions variants were found by sequence alignment of Capsicum cp genome. These findings provide a foundation for further investigation of cp genome evolution in Capsicum and other higher plants.
        31.
        2015.07 서비스 종료(열람 제한)
        Chloroplast DNA sequences are a versatile tool for species identification and phylogenetic reconstruction of land plants. Different chloroplast loci have been utilized for phylogenetic classification of plant species. However, there is no evidence for a short sequence that can distinguish all plant species from each other. Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Thus, the complete chloroplast genome sequence of Korean landrace “Subicho” pepper (Capsicum annuum var. annuum) has been determined here. The total length of the chloroplast genome is 156,878 bp, with 37.7% overall GC content. A pair of IRs (inverted repeats) of 25,801 bp was separated by a small single copy (SSC) region of 17,929 bp and a large single copy (LSC) region of 87,347 bp. The chloroplast genome harbors 132 known genes, including 87 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes. A total of seven of these genes are duplicated in the inverted repeat regions, nine genes and six tRNA genes contain one intron, while two genes and a ycf have two introns. Analysis revealed 144 simple sequence repeat (SSR) loci and 96 variants, mostly located in the non-coding regions. The types and abundances of repeat units in Capsicum species were relatively conserved and these loci will be useful for developing molecular markers.
        32.
        2015.07 서비스 종료(열람 제한)
        The chloroplast (cp) is an organelle with its own genome that encodes a number of cp-specific components. Resequencing technology via next-generation sequencing has recently been successfully applied to cp genome characterization. The field of cp characterization is rapidly growing due to its wide versatility and two complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7% overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Eleven genes contain one or two introns. Pair-wise alignments of cp genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motif and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome.
        33.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Polygonatum is a genus placed in the family Liliaceae, distributed throughout the Northern Hemisphere and 16 of the species are grown naturally in Korea. In oriental medicine, the rhizomes of Polygonatum have been used as two different medicines, Okjuk (Polygonati odorati Rhizoma) and Hwangjeong (Polygonati Rhizoma). However, it is difficult to identify the morphological and chemical differences between the medicinal groups and thus easy to confuse the one with the other. Therefore, a clear classification standard needs to be established so as to be able to discriminate between them. In the study, the morphological characteristics of the plants, Polygonatum spp., were examined. Then, the differences in SNPs among the DNA sequences of 7 of the Polygonatum spp. and 1 of the Disporum spp. were analyzed by DNA barcoding with rpoC1, rpoB2, matK, and psbA-trnH of the cpDNA region. In the results, three regions, rpoC1, rpoB2, and matK were useful for discriminating the species, P. stenophyllum and P. sibiricum. Furthermore, it was possible to discriminate the individual germplasm within the species by using the combination of the results obtained from rpoB2, rpoC1, and matK.
        38.
        2014.07 서비스 종료(열람 제한)
        Common buckwheat (F. esculentum) and tartaryan buckwheat, also called as bitter buckwheat (F. tartarycum) grain and leaves (buds) are used in various dietary preparations and as leafy vegetable. The cultivated area of buckwheat is increased based on its nutritional value. Particularly bitter buckwheat is a rich source of rutin compared to common buckwheat which helps in reducing intra-vascular cholesterol, high blood pressure, diabetes and is also reported to have a crucial role in pharmaceutical research. With this functional characteristics of bitter buckwheat, the cultivation is now highly increased. But a few genetic and genomic research of tartari buckwheat are published until now. Here we described the complete full chloroplast genome sequence with NGS. Tartary buckwheat complete chloroplast genome is composed of a total sequence length of 159,272 bp which is 327 bp lesser than common buckwheat genome of 159,599 bp. Large single copy region (LSC) is comprised of 84,398 bp in tartary and 84,888 bp in common buckwheat whereas small single copy region (SSC) is 13,292 bp and 13,343 bp and the size of inverted repeat region (IR) is 61,532 bp and 61,368 bp in tartary and common buckwheat respectively. Total RNA bases were 11942 and 11950 and overall GC-content in tartary and common buckwheat is almost similar which is 37.9% and 38% with a GC skew of -0.016 and 0.02 respectively. Total repeat bases accounted for 1,056 bp and 804 bp with an average repeat length of 48 bp and 45 bp and the length of an average intergenic distance was 495 bp and 502 bp in tartary and common buckwheat respectively. F. tarataticum cp genome has a total of 104 genes including 82 protein coding genes, 29 transfer RNA genes and 4 ribosomal RNA genes. Protein coding genes include photosynthesis related genes majorly in addition to transcription and translation related genes. LSC region has 62 protein coding genes and 22 tRNA genes whereas SSC region contains 11 protein coding genes and one tRNA gene. The nucleotide and amino acid sequences of protein coding genes in LSC, SSC and inverted repeat regions in F.tartaricum and F.esculentum are highly similar with a total average identity of 98.8 and 98.3% respectively.
        39.
        2014.07 서비스 종료(열람 제한)
        Chloroplasts are plant-specific organelles, which have their own genome. Most of the plant chloroplast genomes (CP genome) are highly conserved in terms of its gene contents and genome structures, and they exist in cells with abundant copy numbers. Because of numerous copy numbers, the complete chloroplast sequence assembly pipeline with small amount of whole genome resequencing data, produced by NGS technique, was established in our laboratory. From 14 accessions of cabbage (Brassica oleracea L.) resequencing data produced by Illumina Hi-seq 2000, CP genomes were assembled and compared to each other. 18 sequence variance regions were detected, and 6 HRM(High Resolution Melting curves) markers were developed. Approximately 1 Gb of whole genome sequencing data of 10 Brassica rapa and 2 Brassica napus were also obtained from Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science. With these resequencing data, all CP genomes from these accessions were assembled. Total 27 complete CP genomes of B.oleracea, B.rapa, B.napus, and brassico-raphanus which is a novel allotetraploid species between B.rapa and Raphanus sativus, were compared in sequence level. Phylogenetic analysis based on the comparison revealed that B.rapa could be the maternal species when rapeseeds and brassico-raphanus became allotetraploid species. Additionally, CP genome of B.napus cv.M083 is closer to B.rapa accessions than the other B.napus accessions, thus B.napus could have several different origins.
        40.
        2014.07 서비스 종료(열람 제한)
        Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared to seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter.
        1 2 3 4