검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 355

        23.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRESSSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.
        4,000원
        24.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a numerical analysis was performed as steady-state analysis to investigate the effect of interference between the propellers of the hexa-copter. As the distance increases, there is little change in thrust, but when a propeller close to the reference propeller rotates, it was confirmed that the thrust decreased due to the interference effect. Unsteady state analysis was performed to confirm the influence of the hexa-copter fuselage. If there is a fuselage, the thrust was predicted to increase by about 4.97% due to the ground effect. If the design parameters are established considering the effect of the fuselage of the hexa-copter, it is expected to be used for basic design and application design in the future.
        4,000원
        25.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        과학과 기술의 발달로 복합재료, 합금, 고강도 탄소섬유, 고분자 재료 등 지능형 소재가 개발되고 있다. 다양한 엔지 니어링 분야에서 이러한 첨단 재료의 응용을 연구하기 위해 전 세계적으로 광범위한 연구가 진행되고 있다. 초탄성 형상기억합 금(SSMA)은 깃발 모양의 히스테리시스 거동을 가지며 추가적인 열처리 없이 응력 완화로 인한 잔류 변형이 거의 없는 신뢰성 이 높은 내진 재료이다. 그러나 공학 문제에서 SSMA 효율성을 연구하기 위한 수치 모델의 개발은 여전히 어려운 작업이다. 본 연구에서는 SSMA 인장시험의 실험결과를 통해 유한요소해석 프로그램인 Abaqus와 수치해석 프로그램인 OpenSEES를 이용하여 재료 모델을 구현한 후 해석결과의 거동 특성 및 에너지 소산을 분석하였다.
        4,000원
        28.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the noise reduction effect of the steam vent silencer was investigated by performing a transient flow analysis applying the Loss Model, a porous flow analysis model, and calculating the noise intensity from the pressure fluctuation according to the time change. As a result of flow analysis, it was confirmed that the noise intensity decreased as the number of diffusers and the number of splitters made of foamed aluminum increased. In the case of three-stage diffusers, the noise intensity decreased by up to 33.4 dB when six foamed aluminum with a thickness of 150mm were installed.
        4,000원
        30.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        국제해사기구(IMO)의 온실가스(GHG) 감축 전략과 같은 환경규제를 강화함에 따라 친환경 선박 및 대체 연료 등 기술 개발이 확대되고 있다. 그의 일환으로 해운사와 조선사를 중심으로 에너지 저감과 풍력 추진 기술을 활용한 선박 추진 기술이 대두되고 있다. 풍 력 추진 기술의 확보와 실증 연구를 조선 및 해운 분야에 도입함으로써 친환경 기술을 활용한 고부가가치 시장을 창출할 수 있으며, 운항 선박의 연료 소비율을 줄임으로써 연비를 약 6~8 % 정도 향상시켜 GHG의 감축을 기대할 수 있다. 로터 세일(Rotor Sail, RS) 기술은 원형 실린더가 일정한 속도로 회전하여 유체를 통과할 때 실린더의 수직 방향으로 유체역학적 힘을 발생시키는 기술이다. 이를 마그누스 효과 (Magnus Effect)라고 하며, 본 연구에서는 선박에 설치된 풍력보조추진 시스템인 RS 주위의 난류 유동특성에 관한 수치해석적 연구를 통하 여 추진효율을 높일 수 있는 방안을 제시하고자 하였다. 그래서 RS의 공기 역학적 힘에 영향을 미치는 매개변수로써 속도비(Spin Ratio, SR)와 종횡비(Aspect Ratio, AR) 변화에 따른 양력계수( )와 항력계수( )를 도출하였고, RS 끝단 플레이트(End Plate, EP) 적용에 따른 RS 주변 유동특성을 비교하였다.
        4,000원
        32.
        2022.05 구독 인증기관·개인회원 무료
        The fabrication of waste forms with high thermal and structural stability is an essential technology for the safe management and disposal of radioactive wastes. In particular, the thermal characteristics of waste forms containing high heat-generating nuclides such as Cs and Sr can be used for the optimized design of the waste form to secure its thermal safety, and they also provide basic design data for the safe management of canisters, storage systems, and repositories. The Korea Atomic Energy Research Institute is actively developing processes and equipment for fabricating various types of high-level wastes into a stable glass or ceramic waste form. In previous research related to the thermal analysis of the waste form, a relatively simple analysis was performed by using the analytic solution of the one-dimensional steady-state heat conduction equation considering the decay heat properties of the waste. As a specific application study, the optimized diameter of the cylindrical glass waste form was proposed by evaluating the centerline temperature of the waste form. In this study, we extended previous research by introducing a more complicated model, and the main results are summarized as follows. First, an analytical solution was derived by applying the temperaturedependent thermal conductivity expressed in the general form of polynomial function to the onedimensional heat conduction problem previously studied. Second, the two-dimensional axisymmetric steady-state heat conduction problem with a more realistic cylinder model with finite length was modeled and solved by using the finite element method via Matlab’s PDE (partial differential equation) toolbox. Third, thermal analysis was performed on the SrTiO3 waste form, selected as a stable form of strontium nuclide, using the developed analytical and numerical methods. The differences in the temperature distribution and computation time were evaluated through a comparative study of both solutions. Although the problem considered in this study could easily be solved by using commercial CFD software such as ANSYS or SolidWorks, a code-based program was developed to facilitate parametric design study in conjunction with optimization algorithms. The analysis results could be used to evaluate the thermal stability of waste form and to optimize the shape and size of the waste form in consideration of the design constraints of storage systems or repositories.
        33.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Damages by jellyfish are occurring frequently around the world. Among them, accidents caused by jellyfish stings are serious enough to cause death. So we designed a jellyfish blocking net and analyzed its stability to prevent sting caused by jellyfish entering the beach. To this end, the dynamic behavior of the jellyfish blocking net according to the current speed (0.25-1.0 m/s) and the net type (50, 100 and 150 mm) on the upper part of the blocking net was modeled using the mass spring model. As a result of simulations for the model, the horizontal tension (horizontal component of the mooring tension) of the mooring line increased with the decrease in the mesh size on the upper part of the blocking net at all current speeds, but exceeded the holding force at high tides faster than 0.5 m/s and exceeded the holding force at all current speeds at low tide. Therefore, the jellyfish blocking nets showed poor stability overall. The depth of the float line had a little difference according to the upper mesh size and increased lineary proportional to the current speed. However, the float line sank too much to block the incoming jellyfish. These analysis results helped us find ways to improve the stability of the jellyfish blocking net, such as adjusting the length of the mooring line and improving the holding power. Therefore, it is expected that this technology will be applied us various underwater structures to discover the weaknesses of the structures and contribute to increasing the stability in the future.
        4,500원
        34.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 유한요소해석을 통한 모듈러 구조물 접합부의 힌지접합부 연구에 관하여 소개한다. 모듈러 구조물은 모듈과 모듈을 적층하는 방식으로 공사를 진행하여 단위 모듈간의 기둥 및 보의 일체성을 기대하기 어려운 특성을 가지고 있다. 그러나 현 모듈러 설 계 시 이러한 구조적 특성을 무시하고 횡력에 대한 모멘트전달을 고려하여 기존 강구조와 동일한 방식으로 해석하고 있다. 더구나 모 멘트접합을 체결하기위해 모듈러 외부뿐만 아니라 내부에서 볼트 체결이 이루어져 조립 후 마감을 추가하는 불합리한 상황도 발생한 다. 이러한 일체성을 기대하기 어려운 특성을 고려하기 위하여 힌지접합을 활용한 모듈러구조시스템을 제안하였다. 논문에서는 기존 의 모멘트접합부에서 힌지접합부로 변경하였을 때 하중의 전달을 확인하기 위하여 이전 다른 연구에서 활용되었던 가위 모델을 변형 한 변형 가위 모델을 고안하여 접합부의 기본 이론을 제안·검토하였고, 기본을 바탕으로 계산된 결과는 구조해석 프로그램인 마이다 스 젠과 비교하여 검증하였다. 추가적으로 기존 모멘트접합부로 설계되었던 모듈러구조물을 힌지접합부로 변경하여 부재내력 및 사 용성을 검토하였다.
        4,000원
        35.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The design of the corner joints in furniture structures is very important to firmly support the loaded structure and to sufficiently maintain the durability and stability. Therefore, the strength of the corner joints and the rigidity of the connected panels play a very important role in the structural performance of the assembled furniture. The structural properties can be measured or calculated experimentally or numerically, and compared by representing the applyed forces or bending moments as a function of deformed value. This paper shows the numerical models to determine the strength and stiffness of the 3-types of corner joints for simple designed furniture. Based on the finite element results, the maximum stresses are concentrated on the corner joints designed with MDF panels. And the deformation resistances and maximum applied loads are calculated for furniture corner joints under tensile and compressive moment.
        4,000원
        36.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to present a cross section suitable for low-traffic road pavement considering the environmental characteristics of Vietnam. METHODS : The behavior of the pavement with respect to the axial load was numerically analyzed using the nonlinear finite element method. The elastic-plastic material model was applied to material properties such as subgrade, sub-base layer, and base layer, and whether the material yielded was determined. In order to evaluate the adequacy of the cross section of the Vietnamese low-traffic pavement, it was compared with the KPRP Lv 3 road pavement section. And it was compared with the newly proposed MAST composite Pavement. The design life of each pavement section was calculated using the results obtained from the pavement structural analysis. RESULTS : The cross section of the Vietnamese low-traffic road pavement, KPRP lv3, MAST composite Type1 road pavement did not satisfy the design criteria for fatigue cracking and rutting. MAST composite Type2 was analyzed considering CTAB having 100mm and 150mm thickness and compressive strength of 5MPa, 10MPa, 15MPa and 20MPa, and all of them satisfied the design criteria. CONCLUSIONS : The low-traffic road pavement section in Vietnam currently used is judged to be inappropriate, and the MAST Composite type 2 proposed in this study is evaluated as an appropriate alternative. Further studies such as field application are needed in the future.
        4,000원
        37.
        2021.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Korean stow net is a fishing method that utilizes the changing direction of the net entrance with the tidal current. This study attempted to obtain basic data from the recent offshore stow net fisheries to improve the gear by analyzing the dynamic behavior of the nets affected by current speed and direction using computer simulations. A numerical calculation was performed at a current speed of 0.5 knot between 2.5 knot at each 0.5 knot. The time taken for the gear opening was the longest from 0.5 knot at 1,500 seconds and the shortest from 2.5 knot at 450 seconds in the simulations. In all cases, the net width and tension at net deployment gradually decreased as the current speed decreased. However, the net height tended to increase inversely proportional to the current speed. During the net rotation, the net height was maintained at all cases. The net width and tension fluctuated, but the regularity was very low. In this study, the calculated simulation data showed that the opening efficiency decreased proportional to the current speed. The opening efficiency is related to the catching efficiency; therefore, it is necessary to improve the gear to enhance its opening efficiency.
        4,000원
        40.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The enhancement of heat transfer in cooling system of cylindrical lithium-ion battery pack is numerically investigated by installing fins on the cooling plate. Battery Design StudioⓇ software is used for modeling electro-chemical heat generation in the battery and the conjugated heat transfer is analyzed with the commercial package STAR-CCM+. The result shows that installing fins on the cooling plate increases the convective heat transfer on the surface and thus lowers the maximum temperature of the battery pack. As the length and thickness of the fins increase, heat transfer in the battery pack improves. Considering the geometry and airflow of the battery pack, the optimal values for the length and thickness of the fin are both 2mm. As the convective heat transfer coefficient of the surface increases, the maximum temperature of the battery pack is greatly reduced and the temperature gradient is greatly improved.
        4,000원
        1 2 3 4 5