검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,225

        22.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : Safety Evaluation of Wind Loads of Renewable Energy and Photovoltaic Power Structures. METHODS : Structural safety evaluation was conducted on the wind load of 3kW Photovoltaic Power Structures using ABAQUS. Wind speed was reviewed for 36m/s and 60m/s. Effective Mass and Mass Contribution of Photovoltaic Power Structures was utilized up to 90%. 7 steps were set and applied to structural analysis. RESULTS : As a result of the structural analysis, it was confirmed that the long-term blowing load was affected rather than the size of the wind load. Weak areas were identified at the point of the horizontal beam rather than the modules of the Photovoltaic Power Structures. In particular, it was confirmed that stress exceeding the allowable stress was generated at the junction. In order to secure the safety of Photovoltaic Power Structures, it is judged that reinforcement of the branch is necessary. CONCLUSIONS : The safety of Photovoltaic Power Structures structures for wind load is influenced by persistence rather than the size of the wind load. Therefore, in order to prevent this, it is judged that reinforcement of the branch is necessary.
        4,000원
        23.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the actual sea, the additional resistance due to external force such as wind, current and wave is accompanied, and the required power is added in response to these resistance. Especially when the ship is sailing at low speed, the effects of wind and current have a great impact on the safe control of the ship. Likewise, it is thought that the effects of wind and current have a great impact on the trawl ship control since the towing speed of a bottom trawl ship is a low speed of 3 to 4 knots. If the reduce of ship speed and the increase of engine power due to the influence of wind and current can be identified, the safe towing power can be calculated based on a given engine output. Thus, the appropriate size of a fishing gear can be determined. In this study, a total of 20 trawl operations were conducted for seasonal maritime research in the same research area according to the operation mode of propeller. Based on navigation data, trawl fishing data, and engine performance data acquired during the towing fishing gear, and data of ship speed, hull resistance, fishing gear resistance, wind force and current force according to an incidence angle were estimated. The overall power for these loads was calculated and compared with the measured engine power, and the effects of wind force and current force on the engine power were investigated.
        4,000원
        24.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 전 세계적으로 전례 없는 홍수와 극심한 폭염이 발생하면서 급속한 기후 변화의 심각성에 대한 세계적 인식이 높아졌다. 태양광 발전시설의 사회적 수용성과 안전성을 적극 홍보하는 한편, 국가 차원에서 정책 결정과 사업 운영을 최적화하기 위해 노력하고 있다. 본 연구는 영남·호남권 12개 주요 시·도의 태양광 발전설비 효율을 지역 에너지자원 지원 시스템과 기상자료를 활용한 DEA(Data Envelopment Analysis)를 활용하여 분석하였다. 첫째, 지역 내 지리적 범위의 차이는 발전효율의 성능적 평가의 차이점이 발생하는 것을 알 수 있었다. 둘째, 경제적 측면과 환경적 측면을 모두 고려한 태양광 발전시설에 대한 최적의 공간정보시스템의 중요성을 강조한다. 국내 신재생에너지 발전시설의 입지적 조건 개선으로 거시적 측면의 운영을 질적으로 보완하여 에너지 정책적 지원 필요성을 시사하며, 에너지 투자사업의 경제성 및 타당성을 제시하고자 한다.
        6,900원
        25.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 ESG 경영에 대한 에너지 관련 산업과 기업의 전략적 발전방향 모색을 위하여 글로벌 ESG 경영에서 선도적인 역량과 경험을 갖고 있는 것으로 평가되는 한국중부발전의 사례를 분석해 성공 요인을 도출하고자 하였다. 사례 분석 결과 한국중부발전은 한 발 앞서 ESG 경영에 관심을 갖기 시작해 기후위기 대응과 청정에너지 및 신재 생에너지 사업 분야로 진출하였고, 동반성장과 지역사회 공헌, 부패방지와 윤리경영에 역점을 두고 미래성장과 지 속가능경영을 계속해 객관적인 수치와 실적을 기반으로 우수한 성과를 달성한 것으로 확인되었다. 또한 한국 중부 발전이 글로벌 ESG 경영에 성공할 수 있었던 것은 기존의 글로벌 경영 역량 보유와 이를 제고하고자 전문인력 양 성을 바탕으로 전사적인 조직을 중심으로 하는 지속적인 노력, ESG 리스크에 대한 선제적 관리와 수치목표 중심의 성과관리, 동반성장과 상생경영의 기업문화, 글로벌 ESG 경영에 대한 CEO와 경영진의 판단과 의지가 주요한 요 인으로 작용하였기 때문이라고 분석되었다.
        6,700원
        26.
        2023.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 상사의 변혁적 리더십이 부하들의 발언행동에 영향을 미치는 메커니즘을 이해하기 위한 것이다. 구체적으로는 변혁적 리더십과 발언행동의 영향관계에서 심리적 임파워먼트의 매개효과와 권력거리 성향의 조절효과를 검증하는 것이다. 특히 군 조직에서 수직적인 관계의 중요성이 상당히 크다 는 것을 고려하면 직속상사의 리더십은 부하의 발언에 더 큰 영향을 줄 것이다. 권위적인 군 조직의 특수성은 민간조직에 비해 위계질서가 매우 엄격하므로 발언행동에 대한 메커니즘과 영향이 다르게 나타날 수 있다. 이 연구의 대상은 위계적 조직인 육군의 부사관 및 장교들을 대상으로 하였다. 응답한 517개 표본 중 불성실한 표본 64개를 제외하고 453개의 유효한 표본을 분석에 활용하였다. 자료분석은 기술통 계, 상관관계 분석, 구조모형 검증을 통해 실시하였다. 연구를 통해 다음과 같은 결과를 도출하였다. 첫째, 변혁적 리더십은 발언행동에 통계적으로 유의한 정적 영향을 미치는 것으로 나타났다. 둘째, 변혁적 리더 십과 발언행동 영향관계에서 심리적 임파워먼트는 매개효과를 갖는 것으로 확인되었다. 셋째, 변혁적 리 더십이 발언행동에 미치는 영향을 권력거리 성향이 조절한다. 넷째, 변혁적 리더십이 심리적 임파워먼트 에 미치는 영향을 권력거리 성향이 조절한다. 본 연구 결과를 바탕으로 군 조직의 HRD 담당자에게 시사 할 수 있는 실무적 내용을 논의하였고, 연구의 한계 및 향후 연구방향을 제시하였다.
        6,400원
        32.
        2023.11 구독 인증기관·개인회원 무료
        South Korea’s first commercial nuclear reactor, Kori Unit 1, was permanently shut down in 2017, and preparations are currently underway for its decommissioning. After the permanent shutdown, the spent nuclear fuel from the reactor core is removed and stored in a spent fuel storage facility. Subsequently, steps are taken for its permanent disposal, and if a permanent disposal site is not determined, it is stored in an interim storage facility (or temporary storage facility). Therefore, the activation criteria for radiation emergency plans vary depending on the movement of spent nuclear fuel and the storage location. In this study, it reviewed emergency plans in the U.S. NRC Regulatory Guide (Draft) titled ‘Emergency Planning for Decommissioning Nuclear Power Reactors’ to determine the requirements for radiation emergency plans needed for decommissioned nuclear power plants. Additionally, by examining emergency plans applied to decommissioning nuclear power plants in the United States, this study identified emergency plan requirement that could be applicable to future decommissioned nuclear power plants in South Korea. This study will contribute to the establishment of appropriate radiation emergency plans for decommissioning nuclear power plants in Korea for providing accurate information on overseas cases and relevant guidelines.
        33.
        2023.11 구독 인증기관·개인회원 무료
        To construct and operate nuclear power plants (NPPs), it is mandatory to submit a radiation environmental impact assessment report in accordance with Article 10 and Article 20 of the Nuclear Safety Act. Additionally, in compliance with Article 136 of the Enforcement Regulations of the same law, KHNP (Korea Hydro & Nuclear Power) annually assesses radiation environmental effects and publishes the results for operating NPPs. Furthermore, since the legalization of emission plans submission in 2015, KHNP has been submitting emission plans for individual NPPs, starting with the Shin-Hanul 1 and 2 units in 2018. These emission plans specify the emission quantities that meet the dose criteria specified by the Nuclear Safety and Security Commission. Before 2002, KHNP used programs developed in the United States, such as GASPAR and LADTAP, for nearby radiation environmental impact assessments. Since then, KHNP has been using K-DOSE60, developed internally. K-DOSE60 incorporates environmental transport analysis models in line with U.S. regulatory guidance Regulatory Guide 1.109 and dose assessment models reflecting ICRP-60 recommendations. K-DOSE60 is a stand-alone program installed on individual user PCs, making it difficult to manage comprehensively when program revisions are needed. Additionally, during the preparation of emission plans and the licensing phase, improvements to KDOSE60’ s dose assessment methodology were identified. Furthermore, in 2022, regulatory guidelines regarding resident dose assessments were revised, leading to additional improvement requirements. Currently, E-DOSE60, being developed by KHNP, is a network-based program allowing for integrated configuration management within the KHNP network. E-DOSE60 is expected to be developed while incorporating the identified improvements from K-DOSE60, in response to emission plan licensing and regulatory guideline revisions. Key improvements include revisions to dose assessment methodologies for H-13 and C-14 following IAEA TRS-472, expansion of dose assessment points, and changes in socio-environmental factors. Furthermore, data such as site meteorological information and releases of radioactive substances in liquid and gaseous forms can be linked through a network, reducing the potential for human errors caused by manual data entry. Ultimately, E-DOSE60 is expected to optimize resident exposure dose assessment and enhance public trust in NPP operation.
        34.
        2023.11 구독 인증기관·개인회원 무료
        In the dismantling of nuclear power plants, various forms of radioactive gaseous waste are generated when cutting concrete and metal structures. Large amounts of radioactive dust and aerosols generated during the cutting process of each structure can cause radiation exposure to the environment around the workplace and to the radiation exposure in the body of workers. When cutting structures, water is sprayed to reduce the generation of aerosols, so early saturation of the filter is expected due to radioactive aerosols and fine particles containing a large amount of moisture. A mobile air purification device is being developed to a fast and efficient air purifier that can be used for a long time operation to protect workers from radiation exposure in high radiation areas and to minimize the amount of secondary waste generated. In this paper, the direction for a new concept of unit technology that can achieve the development purpose is described.
        35.
        2023.11 구독 인증기관·개인회원 무료
        Thermal cutting processes that can be applied to dismantling nuclear power plants include oxygen cutting, plasma cutting, and laser cutting. According to the global trend, research projects are being carried out in various countries to upgrade laser cutting, and many studies are also being conducted in Korea with plans to apply laser cutting processes when dismantling nuclear power plants. However, with the current technology level of the laser cutting process, the maximum thickness that can be cut is limited to 250 mm. Therefore, in this study, a laser-oxygen hybrid cutting process was implemented by adding a laser heat source to the oxygen cutting process that can cut carbon steel with a thickness of 250 mm or more (RV, beam, column, beam, etc.) when dismantling the nuclear power plant. This has the advantage of improving the cutting speed and reducing the cutting width Kerf compared to conventional oxygen cutting. In this research, the laser-oxygen hybrid cutting process consisted of laser cutting to which Raycus’ 8 kW Fiber Laser power source was applied and oxygen cutting to which hydrogen was applied with Fuel Gas. The oxygen torch was placed perpendicular to the test piece, and the laser head was irradiated by tilting 35° to 70°. The effects of cutting directions on quality and performance were studied, and cutting paths were selected by comparing cutting results. Thereafter, it was confirmed that there is an optimal laser output power according to the cutting thickness by studying the effect on the cutting surface quality by changing only the laser output power under the same cutting conditions. The results of this study are expected to be helpful in the remote cutting process using laser-oxygen hybrid cutting when dismantling domestic nuclear power plants in the future.
        36.
        2023.11 구독 인증기관·개인회원 무료
        When dismantling a power plant, a large amount of radioactive tanks are generated, and it is estimated that a significant amount of sludge will accumulate inside the tanks during long-term operation. In the process of dismantling a radioactive tanks, it is important to know the composition of the sludge because the sludge present inside must first be removed and then disposed of. In the case of certain tanks, it can be predicted that corrosion products generated due to system corrosion are the main cause of sludge formation. However, in the case of some tanks, it is not easy to predict the sludge composition because various dispersed particles in addition to corrosion products may be mixed with the wastewater. Even if it is collected and analyzed, the sludge composition can change significantly depending on the operation history, so the analysis results cannot be considered representative of the composition. In the case of LHST, surfactant components introduced during the washing and shower process, oil components and dispersed particles dissolved by the surfactant accumulate inside the tank, making sludge difficult to remove. In addition, even if it is removed by ultra-high pressure spraying, unexpected problems may occur in the subsequent treatment process due to the surfactant contained therein. Therefore, it is necessary to analyze in more detail the characteristics of sludge accumulated in LHST and prepare countermeasures. A test procedure was prepared to evaluate the characteristics of sludge accumulating in LHST. According to the test results, the long-term sludge accumulation tendency of the LHST is summarized as follows. ① Initially, the sludge settling speed increases slowly until a surface sludge layer is formed. ② After the surface sludge layer is formed, the sludge rapidly settles until the sludge layer becomes somewhat thicker. ③ When the sludge layer is formed to a certain extent, the sludge escape rate increases and the sludge accumulation rate decreases again. It is assumed that the sludge escape speed is closely related to the fluid flow speed in the relevant area. It is believed that the combined effect of these phenomena will determine the thickness of the sludge layer that will accumulate inside the tank, but it was not possible to evaluate how much the sludge layer would accumulate based on the experimental results alone. However, it can be assumed that significant sludge accumulation occurred in areas where fluid flow was minimal and sludge formation nuclei easily accumulates.
        37.
        2023.11 구독 인증기관·개인회원 무료
        Kori Unit 1 nuclear power plant is a pressurized water reactor type with an output of 587 Mwe, which was permanently shut down on June 18, 2017. Currently, the final decommissioning plan (FDP) has been submitted and review is in progress. Once the FDP is approved, it is expected that dismantling will begin with the secondary system, and dismantling work on the primary system of Kori Unit 1 will begin after the spent nuclear fuel is taken out. It is expected that the space where the secondary system has been dismantled can be used as a temporary storage place, and the entire dismantling schedule is expected to proceed without delay. The main equipment of the secondary system is large and heavy. The rotating parts is connected to a single axis with a length of about 40 meters, and is complexly installed over three floors, making accessibility very difficult. A large pipe several kilometers long that supplies various fluids to the secondary system is installed hanging from the ceiling using a hanger between the main devices, and the outer diameter of the pipe is wrapped with insulation material to keep warm. In nuclear secondary system decommissioning, it is very important to check for radiation contamination, establish and implement countermeasures, and predict and manage safety and environmental risks that may occur when cutting and dismantling large heavy objects. So we plan to evaluate the radiation contamination characteristics of the secondary system using ISOCS (In- Situ Object Counting System) to check for possible radioactive contamination. According to the characteristics results, decommissioning plans and methods for safe dismantling by workers were studied. In addition, we conducted research on how to safely dismantle the secondary system in terms of industrial safety, such as asbestos, cutting and handling of heavy materials and so on. This study proposes a safe decommissioning method for various risks that may occur when dismantling the secondary system of Kori Unit 1 nuclear power plant.
        38.
        2023.11 구독 인증기관·개인회원 무료
        After the major radioactivation structures (RPV, Core, SG, etc.) due to neutron irradiation from the nuclear fuel in the reactor are permanently shut down, numerous nuclides that emit alpha-rays, beta-rays, gamma-rays, etc. exist within the radioactive structures. In this study, nuclides were selected to evaluate the source term for worker exposure management (external exposure) at the time of decommissioning. The selection of nuclides was derived by sequentially considering the four steps. In the first stage, the classification of isotopes of major nuclides generated from the radiation of fission products, neutron-radiated products, coolant-induced corrosion products, and other impurities was considered as a step to select evaluation nuclides in major primary system structures. As a second step, in order to select the major radionuclides to be considered at the time of decommissioning, it is necessary to select the nuclides considering their half-life. Considering this, nuclides that were less than 5 years after permanent suspension were excluded. As a third step, since the purpose of reducing worker exposure during decommissioning is significant, nuclides that emit gamma rays when decaying were selected. As a final step, it is a material made by radiation from the fuel rod of the reactor and is often a fission product found in the event of a Severe accident at a nuclear power plant, and is excluded from the nuclide for evaluation at the time of decommissioning is excluded. The final selected Co-60 is a nuclide that emits high-energy gamma rays and was classified as a major nuclide that affects the reduction of radiation exposure to decommissioning workers. In the future, based on the nuclide selection results derived from this study, we plan to study the evaluation of worker radiation exposure from crud to decommissioning workers by deriving evaluation results of crud and radioactive source terms within the reactor core.
        39.
        2023.11 구독 인증기관·개인회원 무료
        In nuclear power plant (NPP) decommissioning, ventilation and purification of the building atmosphere are important to create a working environment, ensure worker safety, and prevent the release of gaseous radioactive materials into the environment. The heating, ventilation, and air conditioning (HVAC) system of each building is maintained, modified, or newly installed. In this study, based on APR1400, operation strategies were presented in case of ventilation abnormalities in the reactor containment building (RCB), where highly radioactive particles and high dust are most frequently generated during NPP decommissioning. For research, it was assumed that the entire RCB atmospheric ventilation during decommissioning would use the RCB purge system of the existing NPP and perform continuous ventilation. Additionally, it is assumed that areas where high radiation particles and high dust occur locally, such as reactor containers or internal segments, are sealed with tents and purified using a HEFA filter of a temporary portable HVAC, and a exhaust flow path is connected to the discharge duct of the existing RCB purge system. The possibility of abnormal occurrence was largely divided into two cases. First, when large amounts of uncontrolled pollutants are released into the atmosphere inside the RCB, discharge to the environment is stopped manually or automatically by a modified engineered safety function activation signal (ESFAS). Afterwards, the RCB purge system should be operated in recirculation mode to sufficiently purify the RCB atmosphere with a HEPA filter. Second, when the first train of the low volume purge system is not running due to a failure, standby train should be operated. If both low volume purge trains fail, a high volume purge system is used. Intermittent purge operation is preferred due to large capacity during high volume purge operation. In cases where it is not possible to operate all purge systems due to common issues such as power supply, atmospheric sampling is performed to determine whether to proceed with the work inside RCB.
        40.
        2023.11 구독 인증기관·개인회원 무료
        The radiological characterization of SSCs (Structure, Systems and Components) plays one of the most important role for the decommissioning of KORI Unit-1 during the preparation periods. Generally, a regulatory body and laws relating to the decommissioning focus on the separation and appropriate disposal or storage of radiological waste including ILW (intermediate level waste), LLW (low level waste), VLLW (very low level waste) and CW (clearance waste), aligned with their contamination characteristics. The result of the preliminary radiological characterization of KORI Unit-1 indicated that, apart from neutron activated the RV (reactor vessel), RVI (reactor vessel internals), and BS (biological shielding concrete), the majorities of contamination were sorted to be less than LLW. Radiological contamination can be evaluated into two methods. Due to the difficulties of directly measuring contamination on the interior surfaces of the pipe, called CRUD, the assessment was implemented by modeling method, that is measuring contamination on the exterior surfaces of the pipes and calculating relative factors such as thickness and size. This indirect method may be affected by the surrounding radiation distribution, and only a few gamma nuclides can be measured. Therefore, it has limitation in terms of providing detailed nuclide information. Especially, α and β nuclides can only be estimated roughly by scaling factors, comparing their relative ratios with the existing gamma results. To overcome the limitation of indirect measurement, a destructive sampling method has been employed to assess the contamination of the systems and component. Samples are physically taken some parts of the systems or components and subsequently analyzed in the laboratory to evaluate detailed nuclides and total contamination. For the characterization of KORI Unit-1, we conducted the radiation measurement on the exterior surfaces of components using portable instruments (Eberline E-600 SPA3, Thermo G20-10, Thermo G10, Thermo FH40TG) at BR (boron recycle system) and SP (containment spray system) in primary system. Based on these results, the ProUCL program was employed to determine the destructive sample collection quantities based on statistical approach. The total of 5 and 8 destructive sample quantities were decided by program and successfully collected from the BR and SP systems, respectively. Samples were moved to laboratory and analyzed for the detail nuclide characteristics. The outcomes of this study are expected to serve as valuable information for estimating the types and quantities of radiological waste generated by decommissioning of KORI Unit-1.
        1 2 3 4 5