검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 298

        21.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of flow analysis is to develop a simple CFD analysis model to develop a heat transfer analysis model including transient heat transfer characteristics, especially phase change, of thin film evaporators. The simple analytical model focuses on the evaporation phase change. To reduce the computational cost, the shape was simplified to two dimensions, and the simulation time was set short with a focus on simulating the phase change phenomenon. In the future, based on this analysis model, we will develop an analysis model for simulating not only vaporization but also liquefaction, that is, transient distillation phenomenon, according to the shape of the thin film distillation device.
        4,000원
        26.
        2023.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study assessed the influences of fluorine introduced into DLC films on the structural and mechanical properties of the sample. In addition, the effects of the fluorine incorporation on the compressive stress in DLC films were investigated. For this purpose, fluorinated diamond-like carbon (F-DLC) films were deposited on cobalt-chromium-molybdenum substrates using radio-frequency plasma-enhanced chemical vapor. The coatings were examined by Raman scattering (RS), Attenuated total reflectance Fourier transform infrared spectroscopic analysis (ATR-FTIR), and a combination of elastic recoil detection analysis and Rutherford backscattering (ERDA-RBS). Nano-indentation tests were performed to measure hardness. Also, the residual stress of the films was calculated by the Stony equation. The ATR-FTIR analysis revealed that F was present in the amorphous matrix mainly as C-F and C-F2 groups. Based on Raman spectroscopy results, it was determined that F made the DLC films more graphitic. Additionally, it was shown that adding F into the DLC coating resulted in weaker mechanical properties and the F-DLC coating exhibited lower stress than DLC films. These effects were attributed to the replacement of strong C = C by feebler C-F bonds in the F-DLC films. F-doping decreased the hardness of the DLC from 11.5 to 8.8 GPa. In addition, with F addition, the compressive stress of the DLC sample decreased from 1 to 0.7 GPa.
        4,000원
        27.
        2023.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        AZO/Cu/AZO thin films were deposited on glass by RF magnetron sputtering. The specimens showed the preferred orientation of (0002) AZO and (111) Cu. The Cu crystal sizes increased from about 3.7 nm to about 8.5 nm with increasing Cu thickness, and from about 6.3 nm to about 9.5 nm with increasing heat treatment temperatures. The sizes of AZO crystals were almost independent of the Cu thickness, and increased slightly with heat treatment temperature. The residual stress of AZO after heat treatment also increased compressively from -4.6 GPa to -5.6 GPa with increasing heat treatment temperature. The increase in crystal size resulted from grain growth, and the increase in stress resulted from the decrease in defects that accompanied grain growth, and the thermal stress during cooling from heat treatment temperature to room temperature. From the PL spectra, the decrease in defects during heat treatment resulted in the increased intensity. The electrical resistivities of the 4 nm Cu film were 5.9 × 10-4 Ω ‧ cm and about 1.0 × 10-4 Ω ‧ cm for thicker Cu films. The resistivity decreased as the temperature of heat treatment increased. As the Cu thickness increased, an increase in carrier concentration resulted, as the fraction of AZO/Cu/AZO metal film increased. And the increase in carrier concentration with increasing heat treatment temperature might result from the diffusion of Cu ions into AZO. Transmittance decreased with increasing Cu thicknesses, and reached a maximum near the 500 nm wavelength after being heat treated at 200 °C.
        4,000원
        29.
        2022.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Cu2ZnSn(SxSe1-x)4 (CZTSSe) absorbers are promising thin film solar cells (TFSCs) materials, to replace existing Cu(In,Ga)Se2 (CIGS) and CdTe photovoltaic technology. However, the best reported efficiency for a CZTSSe device, of 13.6 %, is still too low for commercial use. Recently, partially replacing the Zn2+ element with a Cd2+element has attracting attention as one of the promising strategies for improving the photovoltaic characteristics of the CZTSSe TFSCs. Cd2+ elements are known to improve the grain size of the CZTSSe absorber thin films and improve optoelectronic properties by suppressing potential defects, causing short-circuit current (Jsc) loss. In this study, the structural, compositional, and morphological characteristics of CZTSSe and CZCTSSe thin films were investigated using X-ray diffraction (XRD), X-ray fluorescence spectrometer (XRF), and Field-emission scanning electron microscopy (FE-SEM), respectively. The FE-SEM images revealed that the grain size improved with increasing Cd2+ alloying in the CZTSSe thin films. Moreover, there was a slight decrease in small grain distribution as well as voids near the CZTSSe/Mo interface after Cd2+ alloying. The solar cells prepared using the most promising CZTSSe absorber thin films with Cd2+ alloying (8 min. 30 sec.) exhibited a power conversion efficiency (PCE) of 9.33 %, Jsc of 34.0 mA/cm2, and fill factor (FF) of 62.7 %, respectively.
        4,000원
        36.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study demonstrates a different approach method to fabricate antimony selenide (Sb2Se3) thin-films for the solar cell applications. As-deposited Sb2Se3 thin-films are fabricated via electrodeposition route and, subsequently, annealed in the temperature range of 230 ~ 310oC. Cyclic voltammetry is performed to investigate the electrochemical behavior of the Sb and Se ions. The deposition potential of the Sb2Se3 thin films is determined to be -0.6 V vs. Ag/AgCl (in 1 M KCl), where the stoichiometric composition of Sb2Se3 appeared. It is found that the crystal orientations of Sb2Se3 thin-films are largely dependent on the annealing temperature. At an annealing temperature of 250 oC, the Sb2Se3 thin-film grew most along the c-axis [(211) and/or (221)] direction, which resulted in the smooth movement of carriers, thereby increasing the carrier collection probability. Therefore, the solar cell using Sb2Se3 thin-film annealed at 250 oC exhibited significant enhancement in JSC of 10.03 mA/cm2 and a highest conversion efficiency of 0.821 % because of the preferred orientation of the Sb2Se3 thin film.
        4,000원
        1 2 3 4 5