검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1,908

        401.
        2022.05 구독 인증기관·개인회원 무료
        After the Fukushima accident in 2011, a huge amount of radioactively contaminated water is being generated by cooling the melted fuel of units 1, 2 and 3. Most of contaminated water is seawater and underwater containing not only salt elements but also nuclear fission products with radioactivity. To treat the contaminated water, Cs/Sr removal facilities such as KURION and SARRY are being operated by TEPCO. Additionally, three ALPS facilities are on operation to meet the regularity standards for discharge to the sea. However, massive secondary wastes such as Zeolite, sludge and adsorbent is being generated by these facilities for liquid water treatment. The secondary wastes containing various radionuclide with Cs and Sr is difficult to store due to highly radioactive concentration and corrosive properties. In Japan, a variety of technologies such as GeoMelt vitrification, In-Can vitrification and CCIM vitrification is considered as a promising solution. In this study, they were reviewed, and the advantage and disadvantage of each technology were evaluated as the candidate technologies for thermal treatment of sludge radwaste.
        402.
        2022.05 구독 인증기관·개인회원 무료
        When the decommissioning of a nuclear power plant begins in earnest, starting with Kori Unit 1, it is necessary to dispose of intermediate-level wastes such as high-dose waste filters and waste resin stored in the power plant, as well as the internal structures of the reactor. However, there are no intermediate-level waste disposal facilities in Korea, and the maintenance of acceptance criteria considering the physical, chemical, and radiological characteristics of intermediate-level waste is insufficient. In this paper, in preparation for the establishment of domestic intermediate-level waste treatment/disposal and acceptance standards, the following major foreign countries’ legal and institutional standards for intermediate-level waste are reviewed, and based on this, factors to be considered when establishing domestic intermediate-level waste treatment/disposal standards were derived. First, although the USA does not define and manage intermediate-level wastes separately, low-level wastes were separated into Class A, B, and C, where land disposal is allowed, and GTCC, which does not allow land disposal. However, it was recently confirmed that the position was changed to recognize the possibility of land disposal of GTCC waste under the condition that the dose to inadvertent intruders does not exceed 5 mSv·yr−1 and a barrier against inadvertent intrusion valid for 500 years is installed. Second, Sweden classifies intermediate-level wastes into short-lived and longlived intermediate-level wastes. The maximum dose rate permitted on packages are different for each vault and a silo of the SFR where short-lived wastes; 100 mSv·h−1 or less is disposed of in BMA, 10 mSV·h−1 or less in BTF, 2 mSv·h−1 or less in BLA and 500 mSv·h−1 or less in silo. Meanwhile, a repository for long-lived low and intermediate level waste, SFL, which could contains significant amounts of nuclides with a half-life greater than 31 years, operations are planned to commence in 2045. Third, France also manages short-lived intermediate-level wastes and long-lived intermediatelevel wastes separately, and the short-lived intermediate-level wastes were disposed of together with short-lived low-level wastes at the La Manche and L’Aube repository. France announced the Cigéo Project, a high- and medium-level long-lived waste plan in 2012, and submitted the creation authorization application for in 2021 with the goal of operating a repository in 2025. Finally, the UK defines intermediate-level waste as “waste whose activity level exceeds the upper limit for low-level waste but does not require heating, which is considered in the design of storage or disposal facilities” and established NIREX to provide deep disposal of intermediate-level radioactive waste. In Finland, wastes with radioactive concentrations of 1 MBq/kg to 10 GBq·kg−1 are classified as intermediatelevel wastes, and a repository was constructed and operated in a bedrock of about 110 m underground. Because the domestic classification standard simply classifies intermediate-level waste as waste exceeding the activity level of low-level waste limit, not high-level wastes, it is necessary to establish treatment and disposal standards by subdividing them by dose rate and long-lived radionuclides concentration to safely and efficiently dispose of intermediate-level waste for. Additionally, there is a need to decide whether or not to reflect safety by inadvertent intruders when evaluating the safety of intermediate-level disposal.
        403.
        2022.05 구독 인증기관·개인회원 무료
        Expansive clays (for examples, bentonites) are favored as buffer and backfill materials because of their low hydraulic conductivity, high swelling potential, and good mechanical properties, and are installed in highly compacted blocks in repositories. Compacted expansive clays have a dual-structure system: macrostructural system which is a complex of clay aggregates with the inter-aggregate pores (macropores) which can be filled by either liquids or gases; microstructural system with the intraaggregate pores between or within clay particles (micropores) which is usually considered to be saturated by liquid. Understanding the dual-strucure system of expansive clays is essential for characterizing and modeling multiphysics (stress-strain, swelling pressure, etc.) in buffers and backfills. Existing multiphysics studies of expansive clays, as in non-expansive soils, were mostly conducted with a single structure approach based on the behavior of macropores, and there have been limitations in the comprehensive interpretation and modeling of experimental results. However, with the recent development of measurement techniques, a lot of available information on the pore structure of compacted expansive clays has been reported, and with the results, a dual-structure approach considering both microstructural and macrostructural systems has been increasingly applied to improve the modeling of multiphysics of expansive clays. This study reviewed the dual-structure system of compacted expansive clays, analyzed previous studies on its evolution according to hydromechanical loading (loading-unloading and wetting-drying paths), and based on these, intended to provide technical knowledge and information needed for multiphysics research of expansive clays-based buffer and backfill for the KRS repository.
        404.
        2022.05 구독 인증기관·개인회원 무료
        High level nuclear waste (HLW) is surely disposed in repository in safe by being separated from human life zone. Deep geological disposal method is one of the most potent disposal method. Deep geological repository is exposed to high pressure and groundwater saturation due to its depth over 500 m. And it is also exposed to high temperature and radiation by spent fuels. Thus, HLW repository suffers extremely complex thermo-hydro-mechanical-radioactive condition. Long-term integrity of repository should be verified because the expected lifetime of the repository is over 10,000 years. However, the integrity of monitoring sensors are not reach the endurance lifetime of the repository with present technology. And the disposal condition, thermo-hydro-mechanical-radioactive, should shorten the estimated lifetime of the monitoring sensors. Therefore, it is necessary to improve the long-term integrity of the monitoring sensors. Although long-term tests are required to identify the prolonged durability of monitoring sensors, accelerated tests can help curtail test period. Accelerated tests is classified into accelerated stress test and accelerated degradation test and their methodology and theories are investigated. Their tests are design and proceed by following process: 1) identify failure modes, 2) select accelerated stress parameter, 3) Determine stress level, 4) Determine testing time and number of specimens, 5) Define measurement paremeter and failure criteria, 6) Suggest measurement method and measurement duration. Literature reviews were conducted to identify the influence of the disposal conditions such as thermo-hydro-mechnical-radioactive on integrity of material and monitoring sensors. The investigated data reported in this paper will be utilized to verify the improvement of integrity of monitoring sensors.
        405.
        2022.05 구독 인증기관·개인회원 무료
        An objective of a safety assessment for geological disposal is to evaluate the radiological impact by radionuclides release from radioactive wastes. Computational estimation of all radionuclides transport in the disposal system, however, is not neccessary because some radionuclides has negligible effect on radiological doses. For this reason, prioritization of radionuclides list is preceded before the safety assessment. The Korea Atomic Energy Research Institue (KAERI) has assessed the long-term safety of a disposal system for spent nculear fuels. Currently, thirty eight radionuclides and twenty three elements are considered in the safety assessment activity of the KAERI. Nevertheless, a screening process for radionulides selection has not been articulated yet. In this study, we reviewed radionuclides selection process in forign countries to re-establish screening criteria for the KAERI’s radionuclides list. Screeing models of the Swedish Nuclear Fuel and Waste Management Company (SKB), the Deparment of Eenrgy (US DOE), and the Japan Nuclear Cycle Development Istitute (JNC) were compared. We found that each country developed different screening model depending on scenarios of radionuclides release. Nonetheless, there were common properties that determines the importance of radionuclides. These properties for radionuclides include halflife, radiotoxicity (or specific activity), and mobility in underground medium. Based on the review results, we proposed radionuclides selection process to prioritize the importance of radionucldies in the KAERI safety assessment.
        406.
        2022.05 구독 인증기관·개인회원 무료
        The timescale for the post-closure safety assessment of a deep geological repository ranges from ten thousand to a million year. In such a long period of time, the biosphere inevitably undergoes changes. Therefore, the long-term evolution of a biosphere is recognized as an important issue in the post-closure safety assessment of a deep geological repository for spent fuels. In this study, we reviewed the approaches to address the long-term evolution of a biosphere. The major drivers of longterm evolution of a biosphere are the climate change and the resulting landscape development. They can affect the hydrogeological and hydrogeochemical characteristics of a biosphere, and then the radionuclide migration through the biosphere followed by the exposure doses for the critical groups. In addition, human activities and the social developments can affect the climate change resulting in the long-term evolution of a biosphere. To make a biosphere assessment, the long-term evolution scenarios for the biosphere should be formulated considering these climate change, landscape development, and human activities. In addition, features, events, and processes (FEPs) that affect the long-term evolution of a biosphere should be used. According to the Safety Case reports of Finland, the major long-term evolution scenario drivers of a biosphere are local sea-level change due to climate change and land use related to crop type, irrigation procedures, livestock, forest management, construction of a well, and demographics. The climate change causing the local sea-level change can be simulated using various earth system models such as CLIMBER-2, MPI/UW, and UVic and an icesheet model such as SICOPOLIS. The review results of this study and FEPs related to the climate change, the landscape development, and human activities will be used to formulate long-term evolution scenarios for the safety assessment of a deep geological repository for spent fuels.
        407.
        2022.05 구독 인증기관·개인회원 무료
        Many countries plan to dispose of spent nuclear fuel through deep geological disposal system. In Korea, a plan is being established for the construction of a deep disposal facility to dispose of highlevel radioactive waste (or spent nuclear fuel). For construction of a deep geological repository, the NSSC (Nuclear Safety and Security Commission) stipulate that detailed technical standards for location, structure, and disposal system of deep geological repository are determined and announced by the Nuclear Safety and Security Commission Notification. Therefore, the regulatory body should carry out the process of regulatory review whether the technical standards developed by the implementer are suitable for the IAEA’s recommendations and guidelines and domestic conditions. In this process, there are many difficulties and uncertainties in terms of time and cost to independently develop safety factors in Korea by referring to the IAEA reports. So, this study intends to investigate and analyze regulatory cases for important safety factors through cases of overseas leading countries in deep geological disposal project. There are two regulatory cases intensively investigated in this study. The first is a regulatory case of regulatory bodies and external experts on the safety case, and the second is a regulatory review case in the process of site selection factor selection. In case of regulatory review of safety case, Sweden and France were selected as the representative target countries. In Sweden, safety cases such as SR-97, SR-Can, and SR-Site have been developed and there are cases of active regulatory review by regulatory agencies in the RD&D process. In France, several safety cases based on sedimentary rocks were developed and the OECD/NEA IRT (International Review Team) was inquired for review for each safety case. The site selection process is divided into a preliminary site selection stage, a site investigation stage, and a site selection and application stage. In each stage, evaluation to select a safe site is carried out using allocated siting factors of that stage. The IAEA SSG-14 report describes aspects that implementers consider in the site selection process and, with this reference, many countries are developing various siting factors and assessment methodologies in consideration of their domestic bedrock condition and geological positions. As a representative example, in Japan which is highly affected by earthquakes and igneous activities, the siting factor is classified into EF (Evaluation Factors) and FF (Favoulable Factors). So, site assessment is conducted preferentially using EF related to earthquakes and igneous activity.
        408.
        2022.05 구독 인증기관·개인회원 무료
        Comprehensive identification and systematic classification of all features, events and processes (FEP) that influence on the performance of a high-level radioactive waste disposal system is essential for safety assessment. Nuclear energy agency (NEA) has been developing and updating the standardized generic FEP list, so-called NEA international FEP list, which may be used as the basis to develop project-specific FEP lists to reflect diverse system and site characteristics in different countries. On the basis, Finland and Sweden have recently got licenses to construct spent nuclear fuel deep disposal facilities. Also in Korea, timely construction of a high-level radioactive waste disposal facility is an urgent issue for stable operation of nuclear power plants. For this end, a FEP list that properly considers for system and site characteristics of Korean high-level radioactive waste disposal facility needs to be developed. In this study, the most recent NEA international FEP list published in 2019 was comprehensively reviewed with focus on the structure of the classification system and the physicochemical mechanisms associated with the key elements. The obtained results will be used for the comparative analysis of domestic and oversea project-specific FEP lists and for the development of a generic FEP list relevant to Korean high-level radioactive waste disposal system.
        409.
        2022.05 구독 인증기관·개인회원 무료
        Bayesian statistics, which is an approach to analyzing data based on Bayes’ theorem, is currently widely used in all fields. However, it has been applied very limitedly to studies related to nuclear nonproliferation. Therefore, this paper provides a knowledge base and directions for using various Bayesian techniques in nuclear non-proliferation. First, the concepts and advantages of the Bayesian approach are summarized and the basic solving methods of Bayesian inference are explained. The Bayesian approach enables more precise posterior estimation using the prior probability and the likelihood functions. To solve Bayes’ theorem, it is necessary to use the conjugate prior distribution, which is analytically solvable, or to use a numerical approach with computing power. Next, for several Bayesian statistics methods, the purpose of use and the mathematical derivation process are described. Bayesian linear regression analysis aims for obtaining a function that outputs the closest value to data of variables and results. Factor analysis is mainly used to derive a smaller number of unobserved latent variables that can represent observed variables. The logit and probit model are nonlinear regression models for when the outcome is binary. The hierarchical model is to analyze by introducing hyper-parameters in an integrated manner when there are several groups of similar data. The Bayesian approach of these methods is generally based on the numerical solution of the Bayesian inference of the multivariate normal distribution. Finally, the previous researches that each introduced method have been applied to nuclear non-proliferation are investigated, and research topics that can be applied in the future are suggested. Bayesian statistics have been mainly used for precise estimation of the amount, location, and radioactivity spectrum of nuclear materials using detectors. Using Bayesian approach, it will be possible to perform various analyzes. For example, the change of activeness of nuclear program can be estimated by Bayesian inferences on the frequency and scale of nuclear tests. And it can be tried predicting the production of plutonium according to the core configuration and burnup using the Bayesian linear regression. Also, by introducing the Bayesian approach to factor analysis or logit analysis of nuclear development motives or nuclear proliferation probability, it can be expected to improve precision. With the development of computer technology, the use of Bayesian statistics increases rapidly. Based on the theory and applied topics summarized in this paper, it is expected that Bayesian statistics will be more actively used for nuclear non-proliferation in the future.
        410.
        2022.05 구독 인증기관·개인회원 무료
        Dry storage cask facilities are considered for temporary storage of spent nuclear fuels before their final disposal. According to relevant domestic laws and regulations, the integrity and gross defects of the PWR spent fuel must be inspected before they are transferred to the dry cask from a wet storage pool of a nuclear power plant. To meet nuclear safeguards requirements for a spent fuel transportation, the KINAC has been working to develop a simple and convenient Non-destructive Testing (NDT) equipment to verify the integrity and gross defects of the spent fuel assembly. This study was conducted in two processes. The first stage is to review the current NDT techniques conducted in the nuclear fuel manufacturing process. During the manufacturing process, the Ultrasonic testing (UT) and Eddy Current Testing (ECT) technique are used for detecting the cracks or foreign materials in a cladding of a fresh fuel. During an over-haul period after an end of one fuel cycle, the sipping test of the spent fuel is performed for detecting the failed fuel assemblies. If it is determined through the sipping test whether any fuel assembly contains a failed fuel rod, the failed fuel rod of lots of fuel rods in the assembly is found out using the UT instrument. The ECT is used for detecting the internal defects and oxide layer thickness of a fuel cladding. Because the UT and ECT are the wellknown technique and has already been employing for the spent fuel inspection, we adopted the UT and ECT technique for development of a new instrument for nuclear safeguards verification. The second stage is to design the UT and ECT equipment in consideration of nuclear safeguards activities in the spent fuel pool. For nuclear safeguards inspection, irradiated fuel or non-fuel items are distinguished. Thus, verification equipment newly designed using the UT and ECT should detect not only a failed rod, but also a false tube, or a false rod, or a different material from a cladding. New probe and signal processing methods are developed to achieve these goals. The design of UT and ECT probes are preferentially carried out according to technical requirements – the probe thickness including a damper material should be less than 1.0 mm - and the study on analyzing signal distortion caused from material difference will be conducted for development of the safeguards inspection equipment. Detailed results of our study will be discussed in this conference.
        411.
        2022.05 구독 인증기관·개인회원 무료
        Investigating major trading partners and items with North Korea is informative in terms that it can predict the path through which North Korea’s strategic items will transfer to non-nuclear-weapon states when North Korea denuclearizes. By analyzing North Korea’s trading partners and the items, it is possible to identify the relevant countries through which items arrive from the first importing country to the end-user in the process of exporting items and to predict the way how North Korea disguise or conceal their strategic items among general items during normal export procedures. As of 2020, North Korea’s major trading partners are China, Russia, Vietnam, India, Nigeria, and Switzerland. Compared to 2019, Mozambique, Tanzania, Ghana, and Thailand entered the top 10, while Brazil, Bangladesh, Pakistan, and South Africa pushed out of the top 10. North Korea’s trade dependence on China accounts for 88.2%, making it the largest trading partner for years, and it shows that North Korea is mainly conducting trade with Asian and African countries. North Korea’s most important export items are mineral products (HS 25-27) and steel & metal products (HS 72-83) and the most significant import items are mineral products (HS 25-27) and oils & fats & prepared foods (HS 15-24). In 2017, due to UN Security Council sanctions for North Korea’s international ballistic missile (ICBM) test-fire, North Korea’s exports from 3 billion dollars fell by 90% to less than 300 million dollars. This is the result of most of North Korea’s major export items included in the export ban, and changes have occurred in its export items. In 2020, export fell to less than 100 million dollars due to border lockdown measures to prevent the spread of COVID-19, which also affected the change of North Korea’s major export items. Although North Korea does not officially publish its foreign trade statistics, in order to review North Korea’s trade information, KOTRA statistics are utilized. KOTRA statistics provide only two digits of HS code number, so it is challenging to identify detailed item classification. Moreover, these statistics are based on the export amount, so it is difficult to determine the exact quantity of export items. It is expected that information on North Korean trading partners and items will be used to predict potential transferable export methods of North Korea’s strategic items when North Korea denuclearizes.
        412.
        2022.05 구독 인증기관·개인회원 무료
        After the annexation of Crimea in 2014, Russia continued to deploy military forces and equipment near the Ukrainian border in March and October of 2021, heightening the international crisis. On February 24, 2022, Russia began its full-scale invasion of Kyiv, the capital of Ukraine, with missiles and ground forces. Russia’s invasion of Ukraine was accompanied by an urgent speech by Russian President Vladimir Putin on the day he would conduct a special military operation in Ukraine. Putin warned that Russia would seek to demilitarize Ukraine and retaliate immediately if foreign interference occurred. In particular, he stated that the expansion of the North Atlantic Treaty Organization and exploitation of Ukrainian territory was unacceptable. Due to the current Russian invasion of Ukraine, the United States has updated export controls and sanctions as of March 15. Extensive US export controls and sanctions recently imposed on some areas of Russia, Belarus, and Ukraine have included industries such as defense, aerospace, energy, and finance. Executive Order EO14065 is issued to ban transactions with specific individuals and entities, including financial institutions. Additionally, Executive Order EO14066 has banned US imports of Russian oil, natural gas, and coal and new investments in the Russian energy sector. The EAR was revised to strengthen export controls on Russia and Belarus. The sanctions imposed include 48 major defense companies, 328 personnel, and the CEO of Sberbank, which produced weapons used in the attack on Ukraine. Companies are listed on the Sectoral Sanctions Identification (SSI) List, and individuals are listed on the Specially Designated Nationals (SDN) List. Sanctions such as asset freezing and a ban on all financial transactions with Americans apply. In line with the international trend, Korea also declared its participation in sanctions against Russia. As of March 25, 2022, export controls have been strengthened by newly established items subject to catchall licenses related to Russia and Belarus. Ministry of Trade, Industry, and Energy (MOTIE) added Fifty-seven items to Annex 2-2 in the Notification of Export and Import of Strategic Items. Most of these sanctions are for dual-use items under the jurisdiction of MOTIE. However, as countries, organizations, and individuals who may be subject to catch-all licenses are included in the sanctions list, Nuclear Safety and Security Commission should also review catch-all licenses for Trigger List Items. These sanctions are expected to last for some time. Even though China and Russia are the Nuclear Weapon States, the US has strengthened export controls. This is likely due to the opacity of China and Russia’s export controls system and the lack of active implementation of UN Security Council sanctions. However, there is an aspect of protecting their technology. It seems that Korea should also pay attention to these changes in international trends and keep pace with the level of control in other countries.
        413.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        동물은 그들의 필요와 외부 자극, 그리고 주변 환경에 반응하면서 특정한 행동과 이동 패턴을 보이며, 생활하면서 대부분의 시간을 보내는 일정한 영역인 행동권(home range)을 가진다. 행동권은 종의 존속과 보전에 매우 중요한 영역이라는 점에 기반하여 해외에서는 행동권 추정 방법론 개발 및 정책 반영이 활발하게 이루어지고 있다. 원격 추적 기술의 발전으로 인해 좌표간 시간 간격이 줄어들며 정밀해진 동물 추적 데이터는 기존 행동권 방법론에 한계점을 드러냈으며, 이를 보완하기 위하여 다양한 새로운 방법론이 개발되었다. 하지만, 국내 행동권 연구는 아직 더딘 편이며 새로이 개발된 방법론 도입도 전혀 이루어지지 않고 있는 상태이다. 본 연구는 동물 행동권의 더욱 정확한 추정을 목적으로 꾸준하게 개발되어 온 해외의 방법론들을 정리 및 소개하여 국내 도입을 촉진하는 것을 목적으로 한다. 먼저 크게 기하학적 그리고 통계적 추정 방법론으로 나눈 후 좌표들이 독립일 때와 자기상관성이 존재할 때의 경우로 나누어 총 7가지의 행동권 추정 방법론을 비교 및 고찰하였다. 실제 전남 신안군 불무기도에 번식하는 괭이갈매기(Larus Crassirostris)의 6월 한 달간 GPS 위치 추적 정보를 사용해 본 연구에서 소개한 방법론을 적용하여 행동권을 도출하였 다. 행동권 결과를 비교분석 함으로써 각 방법론의 특징 및 한계점을 논의하였으며, 향후 동물 행동권을 분석하고자 하는 연구자가 본인이 가지고 있는 데이터 특성과 분석 목적에 알맞는 방법론을 선택할 수 있도록 행동권 분석 방법론 선택 의사결정 가이드라인을 제시하였다.
        4,800원
        414.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single facecentered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength–ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.
        5,500원
        415.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        다양한 산업 중에서 섬유 산업은 섬유 염색을 위해 가장 많은 양의 물을 사용하는데, 이는 여러 종류의 염료를 포 함한 폐수의 방대한 배출로 이어진다. 염료의 제거를 위한 방법에는 오존 처리, 흡착 등의 다양한 처리 방법이 존재한다. 하 지만 이러한 처리 방법은 폐수 재사용의 문제로 인해 처리 가격이 상승하기 때문에 성공적이지 못하다. 이에 대한 대안으로 막분리 공정이 폐수의 염료 처리를 위한 가장 적절한 기술로 보고되고 있다. 이때 사용되는 분리막은 고분자 분리막과 세라 믹 분리막으로 나눌 수 있다. 세라믹 분리막의 장점에는 세척의 용이함, 긴 수명, 내열성, 내화학성, 그리고 기계적 안정성이 있다. 세라믹 분리막은 다양한 원료로 만들 수 있으며, 점토, 제올라이트, 플라이 애시와 같은 천연 재료는 저렴하고 구하기 용이하다. 본 리뷰에서 폐수처리는 크게 한외여과(ultrafiltration), 정밀여과(microfiltration), 그리고 나노여과(nanofiltration) 세 가지 공정으로 나누어져 있다.
        4,000원
        416.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        모든 인구 계층에 저렴한 비용으로 깨끗한 물의 수요를 충족시키는 것은 해결해야 할 세계적인 문제이다. 막 분 리 공정을 통한 해수 및 기수의 탈염은 효율이 높고 확립된 방법이다. 그러나 막 분리 공정은 막 오염, 제거된 오염물의 처리, 그리고 자본집약적 공정이라는 본질적인 문제가 있다. 전기투석은 전위차가 구동력인 막 기반 분리 공정이다. 전기투석막의 장점은 뛰어난 효율과 저렴한 운영 비용이다. 전기투석공정에서 사용되는 이온교환막은 장기간 효율을 잃지 않기 위해 내화 학성과 내열성, 그리고 기계적 안정성이 필요하다. 이 때, 전기투석막의 이온교환용량은 이온교환막의 전도도에 따라 크게 달 라진다. 본 리뷰에서는 이온 전도도과 안정성을 향상시키기 위한 양이온 교환막과 음이온 교환막의 개조를 중점적으로 논의 하였다.
        4,000원
        417.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        정유소와 석유 공장에서 발생하는 폐수는 심각한 환경오염으로 이어진다. 기름이 있는 물을 정수 처리하는 데에 는 많은 방법이 존재하지만, 가장 효과적인 방법은 막을 이용한 기술이다. 물에서 기름기를 제거하는 데 사용되는 유기재료로 만들어진 고분자 막은 파울링이라는 고질적인 문제를 가지고 있다. 무기성 막은 수명이 길다는 점에서 유기성 분리막보다 효 율적이다. 제올라이트 막은 우수한 화학적 안정성을 갖고 있으며 오랜 기간 재활용할 수 있다. 막에서 친수성의 존재는 막의 수 투과량을 증가시킨다. 제올라이트로 만들어진 세라믹 분리막은 물과 기름을 분리하는 데 사용되는 효율적인 무기막 중 하 나이다. 본 리뷰논문은 i) 순수 제올라이트 막과 ii) 다른 물질과 혼합된 제올라이트 복합막, 2가지로 분류되는 제올라이트 기 반의 무기막을 사용하는 물과 기름 분리 기술을 중점으로 다루고 있다.
        4,000원
        418.
        2022.04 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        목적 : 국내외에서 보고된 치매 보조기기 적용 연구의 고찰을 통해 보조기기 실제 적용 사례를 살펴보고 이를 통해 국내외 에서 사용되는 보조기기의 종류와 효과성을 알아보고자 한다. 연구방법 : 본 연구는 RISS와 Pubmed 데이터베이스를 이용하여 선정기준에 부합하는 13편의 국내외 연구를 대상으로 하 였다. 검색단어로는 “치매” AND “보조기기”OR“보조공학”를 사용하였다. 분석 대상 연구들은 연구의 근거기반 질적 수준 분석모델에 따라 분류하였고 PICO로 정리하였다. 결과 : 선별된 13편의 연구를 분석한 결과 13편 중 8편의 연구가 치매환자의 정서상태인 기분, 우울, 불안에 긍정적인 효 과를 보였다. 로봇 종류 보조기기의 효과성으로는 치매 노인의 의사소통과 긍정적 정서상태 및 행동 증진이 있다. 배회감 지기의 사용은 치매 노인의 배회행동과 불안의 감소에 유의한 차이를 보였다. AT 기반장치는 사용성과 유용성 면에서 사 용자들의 만족이 높았으며 디지털 보조장치는 치매 노인의 가정생활 지속 능력을 연장시키는 효과가 있었다. 결론 : 치매 보조기기는 정서, 문제행동, 의사소통 영역에서 긍정적인 효과를 보이는 등 기본 일상생활 전반에서 어려움을 겪는 치매 노인들에게 유용하게 활용될 수 있다. 본 연구를 통해 제한점을 보완한 연구 결과를 기반으로 치매 노인 개개 인의 특성에 알맞은 보조기기를 적용하는 데에 적절한 참고자료가 됨으로써 이에 따라 다양한 치매 보조기기 적용 중재 연구가 활발하게 이루어져야 할 것이다.
        4,300원
        419.
        2022.04 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        목적 : 본 연구는 최근 10년간 국내 발달장애 아동을 대상으로 사회적 상호작용 향상을 위한 감각통합중재 효과를 체계적 으로 분석하여 제시하고자 한다. 연구방법 : 본 연구는 2010년 1월부터 2019년 12월까지 ‘대한작업치료학회’, ‘대한감각통합치료학회’, ‘학술연구정보서비 스’, ‘한국학술정보’를 통해 게재된 국내논문을 대상으로 하였으며, “감각통합”, “발달장애”, “사회적 상호작용”을 검색용어 로 사용하여 검색하였고, 검색된 45편의 논문 중 본 연구에 적합한 6편의 연구를 분석대상으로 선정하였다. 결과 : 분석에 포함된 연구의 근거수준은 수준 Ⅱ와 Ⅳ, Ⅴ는 각각 1편, 수준 Ⅲ는 3편으로 가장 많았다. 사회적 상호작용 향상을 위한 고유수용성감각-전정감각-촉각 중심의 그룹감각통합치료가 주로 이루어지고 있었다. 또한 이러한 치료적 중재에서 사용된 결과 측정은 상호작용에 대한 평가요소 빈도가 가장 많았으며, 결과는 평가영역에 대한 긍정적인 향상 이나 긍정적인 감소를 보였다. 결론 : 국내 발달장애 아동의 사회적 상호작용 향상을 위한 감각통합중재의 특징을 제시하여 관련 분야 전문가들이 이에 대한 정보를 활용할 수 있도록 도움을 주고자 하였다. 국내 발달장애 아동을 대상으로 사회적 상호작용 향상을 위해 고유 수용성감각-전정감각-촉각 중심의 그룹감각통합치료가 주로 이루어지고 있으며, 이러한 중재가 긍정적인 향상이나 긍정 적인 감소를 보였다
        4,000원