검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 66

        42.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, it has been found that mechanical alloying (MA) facilitates the nanocomposites formation of metal-metal oxide systems through solid-state reduction during ball milling. In this work, we studied the MA effect of FeO-M (M = Al, Ti) systems, where pure metals are used as reducing agents. It is found that composite powders in which O and TiO are dispersed in -Fe matrix with nano-sized grains are obtained by mechanical alloying of FeO with Al and Ti for 25 and 75 hours, respectively. It is suggested that the large negative heat associated with the chemical reduction of magnetite by aluminum is responsible for the shorter MA time for composite powder formation in FeO-Al system. X-ray diffraction results show that the reduction of magnetite by Al and Ti if a relatively simple reaction, involving one intermediate phase of FeAlO or FeTiO. The average grain size of -Fe in Fe-TiO composite powders is in the range of 30 nm. From magnetic measurement, we can also obtain indirect information about the details of the solid-state reduction process during MA.
        4,000원
        43.
        2004.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni-diamond composite powders with nickel layer of round-top type on the surface of synthetic diamond (140/170 mesh) were prepared by the electroless plating method (EN) with semi-batch reactor. The effects of nickel concentration, feeding rates of reductant, temperature, reaction time and stirring speeds on the weight percentage and morphology of deposited Ni, mean particle size and specific surface area of the composite powders were investigated by Atomic Adsortion Spectrometer, SEM-EDX, PSA and BET. It was found that nucleated Ni-P islands, acted as catalytic sites for further deposition and grown into these relatively thick layers with nodule-type on the surface of diamond by a lateral growth mechanism. The weight percentage of Ni in the composite powder increased with reaction time, feeding rate of reductant and temperature, but decreased with stirring speed. The weight percentage of Ni in Ni-diamond composite powder was 55% at 150 min., 200 rpm and 7 .
        4,000원
        44.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reduction mechanism of the composite powders mixed with and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20 to 30. Then, powder is reduced to W via W and W at higher temperature region. Finally, the gaseous phase of formed by reaction of with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and powder.der.
        4,000원
        45.
        2003.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanostructured Cu-AlO composite powders were synthesized by thermochemical process. The synthesis procedures are 1) preparation of precursor powder by spray drying of solution made from water-soluble copper and aluminum nitrates, 2) air heat treatments to evaporate volatile components in the precursor powder and synthesis of nano-structured CuO + O, and 3) CuO reduction by hydrogen into pure Cu. The suggested procedures stimulated the formation of the gamma-AlO, and different alumina formation behaviors appeared with various heat treating temperatures. The mean particle size of the final Cu/AlO composite powders produced was 20 nm, and the electrical conductivity and hardness in the hot-extruded bulk were competitive with Cu/AlO composite by the conventional internal oxidation process
        4,000원
        46.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ultrafine TaC-5%Co composite powders were synthesized by spray conversion process using tantalum oxalate solution and cobalt nitrate hexahydrate(Co( . 6). The phase of Ta-Co oxide powders had amorphous structures after calcination below 50 and changed , and phase by heating above . The calcined Ta-Co oxide powders were spherical agglomerates consisted of ultrafine primary particles <50 nm in size. By carbothermal reaction, the TaC phase began to form from 90. The complete formation of TaC could be achieved at 105 for 6 hours. The observed size of TaC-Co composite powders by TEM was smaller than 200 nm.
        4,000원
        49.
        2003.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, imbedded copper matrix powders have been successfully prepared from the () composite salt solution. The composite powders were formed by drying the solution at 200~40 in the hydrogen atmosphere. Photocatalytic characteristics was evaluated by detecting TOC (total organic carbon) amount with TOC analyzer (model 5000A Shimadzu Co). Phase analysis of composite powders was carried out by XRD, DSC and powder size was measured with TEM. The mean particle size of composite powders was about 100 nm and a few zinc and copper oxide phases was included. The reduction ratio of TOC amount was 60% by the composite powders under the UV irradiation for 8 hours
        4,000원
        51.
        2002.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the fabrication process of the W-Cu nanocomposite powders has been studied to improve the sinterability through the mechanical alloying and reduction of W and Cu oxide mixtures. In this study. the W-Cu composites were produced by mechanochemical process (MCP) using mixtures with two different milling types of low and high energy, respectively. These ball-milled mixtures were reduced in atmosphere. The ball-milled and reduced powders were analyzed through XRD, SEM and TEM. The fine W-Cu powder could be obtained by the high energy ball-milling (HM) compared with the large Cu-cored structure powder by the low energy ball-milling (LM). After the HM for 20h, the W grain size of the reduced W-Cu powder was about 20-30 nm.
        4,000원
        52.
        2002.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new approach to produce nanostructured WC/Co composite powders by a mechanochemical process was made to improve the mechanical properties of advanced hardmetals. Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution from ammonium metatungstate(,AMT) and cobalt nitrate hexahydrate (Co(NO).6). spray dried W-Co salt powders were calcined for 1 hr at in atmosphere of air. The oxide powder was mixed with carbon black by ball milling and this mixture was heated with various temperatures and times in . The composite oxide powders were obtained by calcinations at . The primary particle size of W/Co composite oxide powders by SEM was 100 nm. The reduction/carburization time decreased with increasing temperatures and carbon additions. The average size of WC particle carburized at by TEM was smaller than 50 nm.
        4,000원
        55.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to enhance sinterability of W-Cu composites used for heat sink materials, mechanical alloying process where both homogeneous mixing of component powders and fine dispersion of minor phase can be easily attained was employed. Nanostructured W-Cu powders prepared by mechanical alloying showed W grain size ranged of 20-50 nm and were able to be efficiently sintered owing to the fine particle size as well as uniform distribution of Cu phase. The thermal properties such as electrical resistivity, coefficient of thermal expansion and thermal conductivity were evaluated as functions of temperature and Cu content. It was found that the coefficient of thermal expansion could be controlled by changing Cu content. The measured electrical resistivities and thermal diffusivities were also varied with Cu content. The thermal conductivities calculated from the values of resistivities and diffusivities showed similar tendency as a function of temperatures. However, this is in contradiction with thermal conductivities of pure W and Cu which decrease with increasing temperature.
        4,000원
        58.
        1999.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        분무건조법으로 용사용 원적외선 세라믹/알루미늄 복합분말을 제조하여 플라즈마 용사법으로 알루미늄 모재에 용사한 후, 미세구조, 결정상, 열충격저항성 그리고 분광복사율을 조사하였다. 분무건조된 복합분말의 입형은 구형으로 34~105μm . 영역에서 높은 복사율을 보였다. 그러나 알루미늄 첨가량이 증가할수록 원적외선 방사특성은 감소하였다. 결과적으로 용사법으로 원적외선 방사특성의 큰 손실 없이 방사체를 제조하기 위해서는 20~30%wt%Al를 첨가하여 복합분말을 제조하는 것이 가장 효율적이라고 판단된다.
        4,000원
        60.
        1999.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        MoSi-TiC composite powders were fabricated by in-situ reaction through mechanical alloying. Also the monolithic MoSi as well as TiC were synthesiced by mechanical alloying for comparison. An abrupt increase of vial surface temperature was detected due to a sudden reaction between elemental powders during milling. The reaction time for synthesis of composite powders decreased with increasing the content of (Ti+C) powder. It was found that a significant decrease of Ti grain size was observed with increasing the milling time. And the synthesis reaction of MoSi-TiC composite powders were largely dependent on the reaction between Ti and C powders.
        4,000원
        1 2 3 4