검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 95

        61.
        2013.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        A collision-free formation reconfiguration trajectory subject to the linearized Hill’s dynamics of relative motion is analytically developed by extending an algorithm for gravity-free space. Based on the initial solution without collision avoidance constraints, the final solution to minimize the designated performance index and avoid collision is found, based on a gradient method. Simple simulations confirm that satellites reconfigure their positions along the safe trajectories, while trying to spend minimum energies. The algorithm is applicable to wide range of formation flying under the Hill’s dynamics.
        62.
        2012.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In this paper, the authors introduced a new approach to find the optimal collision avoidance maneuver considering multi threatening objects within short period, while satisfying constraints on the fuel limit and the acceptable collision probability. A preliminary effort in applying a genetic algorithm (GA) to those kinds of problems has also been demon\-strated through a simulation study with a simple case problem and various fitness functions. And then, GA is applied to the complex case problem including multi-threatening objects. Two distinct collision avoidance maneuvers are dealt with: the first is in-track direction of collision avoidance maneuver. The second considers radial, in-track, cross-track direction maneuver. The results show that the first case violates the collision probability threshold, while the second case does not violate the threshold with satisfaction of all conditions. Various factors for analyzing and planning the optimal collision avoidance maneuver are also presented.
        63.
        2012.02 KCI 등재 서비스 종료(열람 제한)
        이 연구에서는 소뇌에 이상이 있는 소뇌성 운동실조증 환자들(n=9)을 대상으로 단일 장애물 보행과 연속적인 다중 장애물 보행을 수행하는 동안에 운동학적 특성과 전략을 분석함으로써 소뇌가 어떠한 역할을 하는지 규명하였다. 실험과제는 과제의 난이도 별로 단일 장애물 보행과 다중 장애물 보행 조건으로 설정하여 장애물을 넘는 동안 발의 높이, 장애물을 넘기 전 발의 이륙거리, 장애물을 넘은 후 착지거리, 장애물을 넘는 동안 발의 외전량, 보행 속도 등의 운동학적 변인을 측정하였다. 연구 결과, 소뇌 환자 집단은 정상인들에 비해 장애물을 통과하는 속도가 느리며, 단일 장애물 과제를 수행 할 때 보다 많은 정보처리를 요구되는 다중 장애물 과제의 수행에 어려움을 보여 주었다. 또한 장애물을 넘기 위한 행동 전략으로 다중 장애물뿐만 아니라 단일 장애물 과제 모두에서 발의 위치를 장애물에 가까이하고 발의 높이를 높게 하여 발이 장애물에 걸리지 않게 하는 전략을 선택하는 것 역시 운동계획과 예측 전략에 어려움이 있음을 시사한다. 이러한 결과는 시각적 정보 처리가 요구되는 동작 과제와 연속적인 다중 장애물 보행과 같은 복잡한 하지 제어의 계획과 실행에 소뇌가 중요한 역할을 담당한다는 사실을 보여준다.
        64.
        2011.05 KCI 등재 서비스 종료(열람 제한)
        본 연구의 목적은 체육수업에서 학생들이 지각한 능력믿음과 접근-회피 목표 및 지연행동과의 구조적 관계를 검증하는 것이다. 577명의 남녀 중학생(남학생 229명, 여학생 348명)이 설문조사에 참여하였다. 자료는 기술통계, 상관분석, 신뢰도 분석, 구조방정식 모형분석을 통해 분석되었다. 구조방정식 모형분석의 결과 증가된 믿음은 숙달접근, 수행접근과 숙달회피목표를, 고정된 믿음은 수행접근, 숙달회피와 수행회피목표에 직접적으로 영향을 미치며, 숙달접근과 숙달회피 및 수행회피는 지연행동에 직접 영향을 미치는 예측변인이었다. 또한 증가된 믿음은 숙달접근과 숙달회피목표의 매개를 통해서 뿐만 아니라 직접적으로 지연행동에 영향을 미치고, 고정된 믿음은 숙달회피와 수행회피목표를 통해 지연행동에 영향을 미치는 것으로 나타났다. 다집단 분석의 결과 증가된 믿음이 숙달접근목표에 미치는 영향력은 여학생이 남학생보다 강하게 작용하였다. 본 연구결과는 고정된 믿음을 가진 학생들이 회피목표를 지향하여 수업시간에 지연행동을 하지 않도록 적절한 교수전략이 필요함을 시사한다.
        65.
        2010.03 KCI 등재 서비스 종료(열람 제한)
        The studies on automatic ship collision avoidance system, which have been carried out in the last 10 years, are facing on new situation due to newly developed high technology such as computer and other information system. It was almost impossible to make it used in real navigation field 3-4 years ago because of the absence of any tool to give other ship's information, however recently developed technology suggests new possibility. This study is carried out to develop the automatic ship collision avoidance support system which considers ship's manoeuvrability into it's collision avoidance algorithm. One of the important part in ship collision avoidance system is collision decision module which can calculate collision risk with other ships and act properly to avoid the situation. Many of previous researches are using present ship's dynamic data such as present speed, position and course to calculate collision risk. However when a ship commences avoidance action, the real situation is quite different with one that has been estimated by the ship's initial data due to the ship's manoeuvring characteristic. Therefore it is better to take into account ship's manoeuvring characteristic from the stage of collision decision in ship collision avoidance system. In this study, these effects are included in the developed system. The proposed system are verified its usefulness in numerical simulation environments.
        66.
        2009.05 KCI 등재 서비스 종료(열람 제한)
        This paper presents a goal-directed reactive obstacle avoidance method based on lane method. The reactive collision avoidance is necessarily required for a robot to navigate autonomously in dynamic environments. Many methods are suggested to implement this concept and one of them is the lane method. The lane method divides the environment into lanes and then chooses the best lane to follow. The proposed method does not use the discrete lane but chooses a line closest to the original target line without collision when an obstacle is detected, thus it has a merit in the aspect of running time and it is more proper for narrow corridor environment. If an obstacle disturbs the movement of a robot by blocking a target path, a robot generates a temporary target line, which is parallel to an original target line and tangential to an obstacle circle, to avoid a collision with an obstacle and changes to and follows that line until an obstacle is removed. After an obstacle is clear, a robot returns to an original target line and proceeds to the goal point. Obstacle is recognized by laser range finder sensor and represented by a circle. Our method has been implemented and tested in a corridor environment and experimental results show that our method can work reliably.
        67.
        2009.05 KCI 등재 서비스 종료(열람 제한)
        In this paper, we provide experimental results and verification for obstacle avoidance algorithm 'ELA(Emergency Level Around)', which is applicable to rescue robots. ELA is a low level intelligence-based obstacle avoidance algorithm, so can be used in fast mobile robots requiring high speed in operation with little computational load. Constructed system for experiments consist of laptop, sensors, peripheral devices and mobile robot platform VSTR(Variable Single-tracked Robot) to realize predetermined scenarios. Finally, experiment was conducted in indoor surroundings including miscellaneous things as well as dark environment to show fitness and robustness of ELA for rescue, and it is shown that VSTR navigates endowed area well with real-time obstacle avoidance based on ELA. Therefore, it is concluded that ELA can be a candidate algorithm to increase mobility of rescue robots in real situation.
        68.
        2008.09 KCI 등재 서비스 종료(열람 제한)
        As a method to reduce collision accidents of ships at sea, this paper suggests an expert system for collision avoidance and navigation (hereafter "ESCAN"). The ESCAN is designed and developed by using the theory and technology of expert system and based on the information provided by AIS and RADAR/ARPA system. In this paper the ESCAN is composed of four(4) components; Facts/Data Base in charge of preserving data from navigational equipment, Knowledge Base storing production rules of the ESCAN, Inference Engine deciding which rules are satisfied by facts or objects, User System Interface for communication between users and ESCAN. The ESCAN has the function of real--time analysis and judgment of various encountering situations between own ship and targets, and is to provide navigators with appropriate plans of collision avoidance and additional advice and recommendation This paper, as a basic study, is to introduce the basic design and function of ESCAN.
        69.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 만타형 수중운동체의 수평 및 수직 방향에 대한 자동제어 및 충돌회피 시스템을 확립하였다. PID 제어이론, 퍼지 추론 등이 적용되었으며, 시뮬레이션에 사용된 6자유도 운동 방정식은 이론계산과 구속모형 시험에 의하여 확립하였다. PID제어에 의한 심도제어 결과가 제시되었으며, UUV의 충돌 위험도는 가상 소나 시스템을 이용한 퍼지 추론으로 추정하였다. 이를 이용하여 만타형 수중운동체의 심도제어 시스템 및 충돌회피 시뮬레이션 시스템이 개발되었다.
        70.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        Collision avoidance is a fundamental and important task of an autonomous mobile robot for safe navigation in real environments with high uncertainty. Obstacles are classified into static and dynamic obstacles. It is difficult to avoid dynamic obstacles because the positions of dynamic obstacles are likely to change at any time. This paper proposes a scheme for vision-based avoidance of dynamic obstacles. This approach extracts object candidates that can be considered moving objects based on the labeling algorithm using depth information. Then it detects moving objects among object candidates using motion vectors. In case the motion vectors are not extracted, it can still detect the moving objects stably through their color information. A robot avoids the dynamic obstacle using the dynamic window approach (DWA) with the object path estimated from the information of the detected obstacles. The DWA is a well known technique for reactive collision avoidance. This paper also proposes an algorithm which autonomously registers the obstacle color. Therefore, a robot can navigate more safely and efficiently with the proposed scheme.
        71.
        2008.08 KCI 등재 서비스 종료(열람 제한)
        We propose a novel real-time obstacle avoidance method for rescue robots. This method, named the ELA(Emergency Level Around), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward safe position. In the ELA, we consider two sensor modules, PSD(Position Sensitive Detector) infrared sensors taking charge of obstacle detection in short distance and LMS(Laser Measurement System) in long distance respectively. Hence if a robot recognizes an obstacle ahead by PSD infrared sensors first, and judges impossibility to overcome the obstacle based on driving mode decision process, the order of priority is transferred to LMS which collects data of radial distance centered on the robot to avoid the confronted obstacle. After gathering radial information, the ELA algorithm estimates emergency level around a robot and generates a polar histogram based on the emergency level to judge where the optimal free space is. Finally, steering angle is determined to guarantee rotation to randomly direction as well as robot width for safe avoidance. Simulation results from wandering in closed local area which includes various obstacles and different conditions demonstrate the power of the ELA.
        73.
        2008.06 KCI 등재 서비스 종료(열람 제한)
        We have proposed modeling methods of mariners' standard behavior for collision avoidance by analyzing mariners' recognition process in a previous study. As a subsequent study, the aim of this study is to build a model of mariners' execution process which is one of six processes in the condition of collision avoidance. In this study, thus, the structure of mariners' information processing on the process of taking avoiding actions is described and the relation between mariners' behavior and necessary factors in the process is analyzed. And then we have built a model of mariners' standard behavior for execution process based on the characteristics of mariners in ship-handling, which are obtained from the international collaborative research on human factors. It is tried to define the contents of execution process based on the standard behavior of mariners for collision avoidance and to formulate information processing of mariners.
        74.
        2008.03 KCI 등재 서비스 종료(열람 제한)
        The safety degree of navigation for collision avoidance is closely related with the combination between mariner's behavior and navigational environment. The condition of navigational environment is mainly decided by navigable waters, ship traffic, rule of road, sea state, weather and so on. Especially, the condition of navigable waters and ship traffic in navigational environment are ones of the important factors to attain safe navigation when mariners are underway and crossing, head on or overtaking situation. Thus this paper is to analyze the characteristics of mariner's behavior for collision avoidance caused by ship traffic and navigable waters by analyzing the contents of questionnaire and the results of international collaborative research. As a result, it can be concluded that the density of ship traffic and the area of navigable waters affect mariner's ship handling for collision avoidance.
        75.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        This paper proposes a method of avoiding obstacles and tracking a moving object continuously and simultaneously by using new concepts of virtual tow point and fuzzy danger factor for differential wheeled mobile robots. Since differential wheeled mobile robot has smaller degree of freedom to control and are non-holonomic systems, there exist multiple solutions (trajectories) to control and reach a target position. The paper proposes 'fuzzy danger factor' for obstacles avoidance, 'virtual tow point' to solve non-holonomic object tracking control problem for unique solution and three kinds of fuzzy logic controller. The fuzzy logic controller is policy decision controller with fuzzy danger factor to decide which controller's result is more valuable when the mobile robot is tracking a moving object with obstacles to be avoided.
        76.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        본 논문에서는 선박충돌사고의 주요한 원인이 되는 인적운항과실의 감소 및 효과적인 선박충돌회피를 지원하기 위해 새로이 제안된 '속력을 고려한 선박충돌회피지원 모델'을 기반으로 한 선박충돌회피지원 프로그램 개발에 관하여 연구하였다. 이 프로그램은 선행 연구에서 고려되지 않은 상대선박의 속력이 고려되었으며, 자선의 선회특성을 이용하여 상대선박의 침로, 속도에 대한 충돌회피 가능영역과 방법을 표시함으로써, 근접상황에서도 효과적인 충돌회피 조종을 지원할 것이다.
        77.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        We've investigated the characteristics on mariner's behavior in the collision situation through a full-mission ship handling simulator and considered that it's necessary to model the standard avoiding behavior of mariners in order to apply the obtained results more widely and effectively. Thus we described the contents of standard avoiding behavior taken by mariners in the collision situation and established the concept of the standard model based on human factors for collision avoidance in a previous study. As a following study, this paper is to propose the method of modeling on mariners' standard behavior for collision avoidance by analyzing the contents of mariner's information processing and the related factors using regression analysis. As a result, we confirmed the influence of relating factors to avoiding behavior in mariner's deciding decisions and proposed the modeling method of mariners' standard behavior for collision avoidance with a example of recognition model.
        78.
        2007.06 KCI 등재 서비스 종료(열람 제한)
        Human factors have been considered the primary reason of marine accidents. Especially, the collision between vessels is mostly mused by human behavior. However, there have not been many researches to clarify the reason of marine accidents mused by human factors quantitatively. In order to understand human factors and to enhance safe navigation systematically, using a full mission ship-handling simulator, we've investigated the characteristics of avoiding behavior taken by mariners. Further in order to apply the characteristics more widely and effectively, it's necessary to formulate the standard behavior for ship-handling in the condition of collision avoidance. Is this study, therefore, we intended to propose the concept to model the mariner's standard behavior on the handling of collision avoidance as the first step. As a result, we confirmed the contents of information processing in ship-handling that mariner's generally taking to avoid collision.
        79.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        선박의 충돌회피 방법을 제시하는 관점에 있어, 두 선박의 조우각도에 따라 속력이 충분히 고려되어야 할 것이다. 하지만 선박의 충돌회피를 위해 새롭게 연구된 근접상황 선박충돌회피지원 모델의 안전경계영역(Safe-Guard Ring) 설정은 본선과 상대선박의 속력비가 약 1.7이하로 제한되어 있으므로 제한된 범위 이외의 경우에서 충돌 위험이 존재 할 수 있다. 따라서 본 연구에서는 두 선박이 조우하는 각도 및 속력을 고려한 안전경계영역 설정을 연구함으로써 안전한 충돌회피 조종을 위한 선박충돌회피모델을 제시하고자 한다.
        80.
        2006.12 KCI 등재 서비스 종료(열람 제한)
        Significant increase of container flows in the marine terminals requires more efficient port equipments such as logistic and transfer systems. This paper presents collision avoidance and routing approach based on dynamic programming (DP) algorithm for a linear motor based shuttle car which is considered as a new transfer system in the port terminals. Most of routing problems are focused on automatic guided vehicle (AGV) systems, but its solutions are hardly utilized for LM based shuttle cars since both are mechanically different. Our proposed DP is implemented for real-time searching of an optimal path for each shuttle car in the Agile port terminal located at California in USA.
        1 2 3 4 5