검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 118

        81.
        2000.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to analyze the densification behaviour of stainless steel powder compacts during hot isostatic pressing (HIP) at elevated temperatures, a power-law creep constitutive model based on the plastic deformation theory for porous materials was applied to the densification. Various densification mechanisms including interparticle boundary diffusion, grain boundary diffusion and lattice diffusion mechanisms were incorporated in the constitutive model, as well. The power-law creep model in conjunction with various diffusion models was applied to the HIP process of 316L stainless steel powder compacts under 50 and 100 MPa at . The results of the calculations were verified using literature data. It could be found that the contribution of the diffusional mechanisms is not significant under the current process conditions.
        4,000원
        82.
        2000.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        열처리가 분위기 Y(sub)0.7Ca(sub)0.3CrO(sub)3<원문참조>의 치밀화 및 전기적 특서에 미치는 영향을 조사하였다. 1700˚C 공기중에서 12시간 소결된 시편을 1400˚C O2, Air, N2에서 시간의 변화에 따라 재열처리하였다. N2분위기에서 열처리한 Y(sub)0.7Ca(sub)0.3CrO(sub)3<원문참조>의 밀도는 열처리 시간이 증가함에 따라 다음과 같이 변화하였다. 4.5(0hr)→5.35(24hrs)→5.1g/cm3(48hrs). 전기전도도는 열처리 시간이 증가함에 따라 큰변화는 없었으며, 활성화 에너지는 0.16eV로 일정하였다. Air에서 재열처리한 경우 밀도는 거의 변하지 않았으나, 활성화 에너지는 시간에 따라 0.19에서 0.115eV까지 변화하였다. O2분위기에서 열철한 Y(sub)0.7Ca(sub)0.3CrO(sub)3<원문참조>의 밀도는 24시간 열처리후 4.9(g/cm3)로 증가후 일정하였다. 24시간 이상 N 분위기에서 열처리한 경우와는 다르게 기지상과 비슷한 조성의 제 2상의 석출되었으며 24시간동안 열처리한 시편까지는 전기 전도도에 변화가 없었다. 그러나 48시간 동안 열처리된 시편의 전기 전도도는 감소하였고 활성화 에너지는 400K이하에서 0.167eV, 400K 이상에서 0.24eV이었다.
        4,000원
        85.
        2000.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Densificationbehavior of conventional austenitic stainless steel powder compacts was studied by comparing the relative density of sintered compact(Ds)with that of green compacts(Dg)prepared with various catbon contents and P/M process. Dg of 304and 316 powders by warm compaction under pressure of 686 MPa at heating temperature of powder(553K) and dies (573K) were 80% and 81%, repectively, whichwere 2 and 3% higher than those of conventional green compacts at the same pressure. Ds of 304 compacts sintered at 1373K in H2 gas has the same value of 84% max. regardless of compacting temperature, and Ds of 316 compacts at the same sintering conditions were 80% by conventional compaction and 83% by warm compaction. Oxygen contents of 304 and 316 sintered compacts were increased 1.43∼2.94% and 0.010∼0.921% higher than those of raw powders and warm green compacts, respectively. In other case, Ds of 316 compacts sintered at 1573K in vacuum had the same value of 86%max. And Ds of 316 compacts at the same sintering conditions were 83% and 86% by conventional and warm compaction, respectively. Oxygen contents of 304 sintered compacts were 0.321% and 0.360%, and in case of 316, they were 0.419% and 0.182% by the respective compating condition. With carbon additions in the range 0.1∼0.6% Ds increased to the extent of 86∼89% in 304 sintered compacts, and to 82∼84% and 85∼87% in 316 according to different two compacting peocesses compared to those of sintered compacts without carbon addition.
        4,000원
        93.
        1998.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of the mechanical alloying of elemental Mo and Si powders on the combustion densification behavior of MoSi was investigated. The ignition temperature of the combustion reaction of the mechanically alloyed powder was measured to be significantly lower than that of the powder mixture prepared by the low energy ball milling process. The densification of the products after the combustion reaction under compressive pressure from the mechanically alloyed powders, however, was found to be poorer than that of the products from the ball milled powder.
        4,000원
        94.
        1998.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZrO2, B2O3 및 AI을 사용하여 SHS법에 의한 붕화지르코늄을 합성을 하고 산화철과 알루미늄 분말의 첨가가 합성물의 치밀화에 미치는 영향에 대하여 검토하였다. 합성물중에 존재하는 결정상은 대부분이 ZrB2와 α-AI2O3상이었다. 산화붕소와 알루미늄의 몰비가 1.0:3.3이상일 때 합성물의 치밀화는 크게 증가하였고, ZrB2 입자도α-AI2O3용융상과 더불어 조대하였다. 산화철 1목에 대하여 알루미늄을 1-3몰을 첨가한 것과 산화철 1.5몰에 대하여 알루미늄을 3몰 첨가시 α-AI2O3를 중심으로하는 슬라그상으로부터 용융상의 분이가 가능하였고, 이들 용융상에 존재하는 결정상은 ZrB2이외에 Fe, Fe2B, Zr2Fe상이었다. 용융상의 상대밀도는 산화철 1몰에 대하여 알루미늄을 1몰 첨가시 83.2%인 반면에 그 이상의 첨가량에 대해서는 치밀화는 크게 증가하여 알루미늄을 3몰 첨가한 경우 상대밀도는 93.7%로서 최대를 나타내었다.
        4,000원
        97.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The activated sintering behavior of powder compacts with addition of 0.5 and 1.0 wt.%Ni during the sintering under As atmosphere was studied. The shrinkage was measured and the microstructures were observed by SEM (scanning electron microscopy) and BEI (backscattered electron image) along with the phase analysis by EDS during heating up to 155 and holding for various time at 155. The most of shrinkage occurred upon heating and 92% of theoretical density was attained after sintering for 1 hr at 155. However, little shrinkage ensued even for prolonged sintering over 1 hr at 155. A liquid film formed at about 135 along necks and grain boundaries. The polyhedral grain structure composed of and across the grain boundary developed at 155. It was concluded that the activated sintering of powder by Ni led to the diffusion of Si into Ni decreasing the liquidus temperature and the enhanced diffusion of Mo and Si through such a liquid phase and/or interboundary of .
        4,000원
        98.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        intermetallics containing 0-6 wt% of Cu were made by reactive sintering (RS) under vacuum using elemental powder mixtures (Process 1), electro-pressure sintering (EPS) using RS'ed materials (Process2), and EPS using elemental powder mixtures (Process 3). Relatively low dense titanium silicides were gained by process 1, in which porosity decreased with increasing Cu content. For example, porosity changed from 42 to 19.4% with the increase in Cu content from 0 to 6 wt%, indicating that Cu is a useful sintering aid. The titanium silicides fabricated by Process 2 had a higher density than those by Process 1 at given composition, and porosity decreased with increasing Cu content. For example, porosity decreased from 38 to 6.8% with the change in Cu content from 0 to 6 wt%. A high dense titanium silicides were obtained by Process 3. In this Process, porosity decreased a little by Cu addition, and was almost insensitive to Cu content. Namely, about 9 or 7% of porosity was shown in 0 or 1-6 wt% Cu containing silicides, respectively. The hardeness increased by Cu addition, and was not changed markedly with Cu content for the silicides fabricated by Process 3. This tendency was considered to be resulted from porosity, hardening of grain interior by Cu addition, and softening of grain boundary by Cu-base segregates. All these results suggested that EPS using elemental powder mixtures (Process 3) is an effective processing method to achieve satisfactorily dense titanium silicides.
        4,000원
        99.
        1997.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The densification and grain growth mechanisms of in and in have been investigated. Uranium dioxide powder compacts were sintered at 1 in or at 110 in for various times from 0.5 h to 16 h. The grain size and density of the specimens were measured. From the measured data, the mechanisms of the densification and grain growth were determined by use of available kinetic equations which express the relations between densification and grain growth. In both atmospheres, it has been found that the densification was controlled by the lattice diffusion and the grain growth by the surface diffusion of atoms around pores. It appears that the surface diffusivity as well as the lattice diffusivity increase considerably with the increase in O/U ratio in the specimen.
        4,000원
        1 2 3 4 5