스트론튬계 상전이물질은 특정한 온도에서 물질의 상태가 변함에 따라서 열을 흡수하거나 방출하게 된다. 본 연구의 목적은 스트론튬계 상전이물질의 혼입이 플라이애시 치환 모르타르 및 고로슬래그 치환 모르타르의 수화발열 및 역학적 특성에 미치는 영향을 실험적으로 평가하는 것이다. 스트론튬계 상전이물질의 혼입량은 결합재 질량의 1, 2, 3, 4, 5%로 하였다. 총 12개 수준의 모르타르 배합에 대해서 모르타르 흐름성능, 간이수화열온도상승, 압축 및 휨강도 실험을 각각 수행하였다. 실험결과 본 연구에서 사용한 스트론튬계 상전이물질은 모르타르의 수화열 저감 및 수화지연에 효과적인 것으로 판단된다. 특히 플라이애시 치환 모르타르의 최대온도 상승량은 고로슬래그 치환 모르타르의 최대온도 상승량에 비해 낮게 나타났다. 플라이애시 및 고로슬래그 치환 모르타르의 압축강도는 상전이물질 혼입량이 증가함에 따라 감소하는 것으로 나타났다.
최근 남해안과 제주도 연안에는 5,000톤 이상의 괭생이 모자반이 유입되어 양식장과 조업에 큰 피해를 주고 있으며, 환경훼손 등 사회적 문제로 부각되고 있다. 괭생이 모자반에 존재하는 알긴산은 주로 의약품, 식품 등으로 활용되는 천연 고분자 물질이다. 하지만, 대량으로 활용할 수 있는 수요처가 확보되지 않아 본 연구에서는 괭생이 모자반을 활용한 바이오 폴리머를 구조물 보수용 폴리머 모르타르에 활용하기 위한 연구를 수행하였다. 응결특성 평가 시험에서는 바이오 폴리머가 12% 혼입된 L0BP12 배합은 합성폴리머만 혼입된 L12BP0 배합보다 종결시간이 최대 20%증가하는 것을 확인하였다. 흡수율 시험에서는 LOBP12 배합이 초속경 시멘트 배합인 Plain-URHC보다 0.36% 감소하는 것으로 나타나 바이오 폴리머 혼입으로 모르타르의 수밀성이 증가하는 것을 확인하였다. 압축 및 휨강도 시험에서는 바이오 폴리머의 혼입이 증가할수록 강도가 감소하는 경향을 나타내었고, KS F 4042 기준을 만족하는 최대 바이오 폴리머의 혼입률은 12%로 결정되었다. 또한, 재령 4시간 기준 부착강도는 Plain-URHC시험체 보다 모두 향상되었으며, 1 MPa 이상을 확보하여 바이오 폴리머의 혼입이 모르타르의 부착강도를 향상 시킬 수 있는 것을 확인하였다.
고유동 콘크리트의 사용이 일반화 되면서 유동화제 사용에 따른 콘크리트의 초기 재료물성 발현에 대한 관심이 높아지고 있다. 콘크리트 수화반응에 따른 응결시점은 초기 물성 발현을 나타낼 수 있는 지표 중 하나이며, 이러한 응결시점 평가를 위해 관입저항시험과 함께 다양한 비파괴 평가 기법들이 사용되고 있다. 본 연구에서는 전기비저항 측정법을 이용하여 유동화 모르타르의 응결 지연 현상 평가에 관한 실험연구를 수행하였다. PC계 유동화제 첨가량에 따른 총 9종류의 모르타르 샘플을 준비하였으며, 4-전극법을 이용한 초기재령 모르타르 샘플의 전기비저항 변화를 24h 측정하였다. 측정결과로부터 결정된 전기비저항 상승시기를 모르타르 응결시점 평가를 위한 전기적 변수로 사용하였으며, 측정결과의 비교 분석을 위해 동일 샘플의 관입저항시험을 실시하였다. 또한 유동화 모르타르의 1일 동 탄성계수 및 압축강도 측정을 통해 전기비저항 측정을 이용한 유동화 모르타르의 초기 재료물성 평가 가능성을 확인하였다.
The study examined the difference in activation by using a container (1cm, 3cm) that was different in height from the other time (3 minutes, 6 minutes, 9 minutes) at the same temperature. The activation time and height of the container do not affect the strength.
The purpose of this study is to compare the compression strength of gypsum substituted mortar with that of mortar. After replacing the cement with the loess, a portion of the remaining cement was replaced with gypsum to make specimens. When the gypsum is replaced, the strength of all the specimens is lower than that of the standard specimen. It is necessary to use a long-term strength mixed material to replace this.
A large amount of CRT waste has been generated due to the interruption of analog broadcasting in 2012. In particular, CRT glass has been pointed out as a cause of environmental pollution because it contains a large amount of heavy metals such as lead for electromagnetic shielding. In this study, the electrical resistivity of mortar specimen using CRT waste glass as fine aggregate was measured to investigate the relationship between electrical resistivity and shielding characteristics.
The purposes of this study is to evaluate the adhesion in flexure and adhesion in tension between old-plain cement mortar and new-polymer cement mortar that has been widely used as finishing and repairing materials of RC structures. From the test results, the adhesion in flexure and adhesion in tension of polymer-modified mortar to plain cement mortar are much higher than that of plain cement mortar, and are increased with increasing polymer-cement ratio. The maximum strengths show at polymer cement mortar using EVA dispersion, and those are about 1.69 and 2.10 times respectively, plain cement mortar.
Resently, sargassum honeri, which has flown into the Korean coast, has become a serious problem due to the serious damage to domestic aquaculture and fishery. The purpose of this study is to utilize sargassum honeri containing alginic acid as a natural polymer material in cement mortar for repairing structures. The experimental results show that the flow of mortar tends to decrease as the incorporation rate of biopolymer increases.
This thesis will provide the baseline data of a suitable road repairing solution by analyzing the freeze-and-thaw resistance of inorganic-organic hybrid mortar. The resilience of polymer mortar and high-elastic mortar to freeze thaw resistance showed that the high-elastic mortar showed excellent resistanc
This research provides the baseline data for choosing the inorganic/organic hybrid material as the repairing solution by analyzing its efficiency in securing high vibration resistance and very low permeability. As a result of analysis of the mechanical properties of hybrid composite mortar, the strength increased with age. Therefore, it is considered that an inorganic binder having a certain amount or more is required for high strength development.
In this study, the properties of mortar substituted heavyweight waste glass were evaluated. From the results, the flow value and density increased as the substitution ratio of heavyweight waste glass increased, and compressive and flexural strength decreased.
In this study, CGS is a concrete admixture material that has been investigated as a way to promoto recycling of CSG. As results, Show that the early strength is low and the activity index is according to the degree of fineness is insignificant
When the reinforced concrete structure is in a high salinity environment, chlorine ions penetrate from the surroundings, resulting in corrosion of the reinforcing bars, resulting in low durability. Therefore, studies on the immobilization of chlorine ions are underway, and anion exchange resin, one of them, was used in this study. In this study, chloride ion fixing ability was confirmed by replacing OPC, conventional bead anion exchange resin, and powder anion exchange resin with mortar and then using an electron probe X-ray micro-analyzer. The bead anion exchange resin replaced 3% of the fine aggregate volume and the powder anion exchange resin 5% of the cement volume. The fabricated specimens were cured for 28 days, immersed in NaCl solution for 28 days, and confirmed by electron probe X-ray micro-analyzer.
The purpose of this experimental study is to increase the strength of mortar mixed with activated Hwang-Toh (AHT) and granulated blast furnace slag (GGBS) as a compound for the development of eco-friendly concrete. The compressive strength test was carried out by making mortar specimens with a certain ratio of AHT and GGBS. The percentage of AHT were at 30% and 50% and the GGBS were a 40% and 50% as Major variables. The results of this study showed that for specimens with percentage of AHT at 30% with GGBS increased above the strength of the mortar without the binding. However, the compressive strength of experimentation with percentage of AHT at 50% with partially replace GGBS has decreased by more than the mortar without the binding. Therefore, further study is deemed necessary.
The purpose of this study is to compare the strength according as variables of Hwang-Toe activation temperature based on existing references. Compressive strength tests were carried out when the activation temperature was set to 450℃, 600℃, 850℃ and the replacement ration was set to 30%, 50%. As a result, it showed that strengths of specimens overall increased to 850℃. However, strengths of specimens with 50% replacement of Hwang-Toe were significantly reduced at 450℃ and 600℃. In this regard, it is necessary to study the proper quality of activated Hwang-Toe for mortar application in the future.
This study was evaluated the chloride penetration resistance performance of Surface Protection Material(SPM). SPM was applied 0.25 and 0.51 kg/㎡ to the surface of the mortar and immersed aging of the chloride solution 7, 14, and 28 days. As a results, In the case of SPM was applied, chloride did not penetrate until the 28th day.
The present study investigates the material and hydration properties of nPOFA mixed cement mortar with early carbonation curing based on the fact that each process contributes to fill capillary pores, to enhance compressive strength and to reduce CO2. Mortar samples were carried out compressive strength test, phenolphthalein test, MIP testt and SEM. Pulverized cement paste was analytically characterized by XRD, TG/DTA, and FTIR analzes. The fabricated specimens were cured for 0,7, and 28 days in the carbonation chamber which set to carbon dioxide concentration of 5%
This study was conducted to improve the economy, quality, and load of Soil paving concrete by using waste materials such as Oystery and Dolomitic to solve strength reduction and durability reduction caused by hardening agents in Korea. According to the results of the study, for the curing expenses, the Fine part agreement (FC) and the Furnace slag power lower (BS) are 5:5, It was possible to verify that the best results were obtained in terms of the quality of cement mortar when the natural organic lime and dolomitic lime were mixed at a ratio of 5:5.
In this study, the setting times of mortar using the biopolymer in seaweed was evaluated by penetration resistance. The evaluation was based on the method presented in KS F 2436. Test results show that the biopolymer was used instead of the synthetic polymer, the termination time was delayed.
In this study, the resistance of chloride penetration and sulfate attack of mortar substituted heavyweight waste glass were evaluated. As a result, chloride penetration depth and diffusion coefficient decreased with the substitution of waste glass, chloride penetration resistance is increased. For sulfate attack resistance, the effect of heavyweight waste glass was little.