검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 492

        121.
        2022.10 구독 인증기관·개인회원 무료
        Following a radioactive waste criterion and clearance level radioactive waste Act Article 2. “The radioactive wastes confirmed by the Commission as having concentration by nuclide not exceeding the value determined by the Commission through incineration, reclamation, recycling, etc”. The combustible clearance level radioactive wastes like lumbers are incinerated and non-combustible wastes like concreted are buried. The metals clearance level radioactive wastes are recycled after being re-molded. However, the clearance level radioactive waste with keeping its original forms is not common. Due to the nature of KAERI, the equipment are brought into the radiation-controlled zone for experiments. Those equipment are conservatively considered contaminated and categorized with radioactive waste following nuclear safety acts. In this case, the spectroscopy device which is clearance level radioactive waste is self-disposed for use in non-controlled areas. The 4 devices are composed of 3 gamma-ray spectroscopy and 1 alpha, beta counting system. Those devices were used for clearance level radioactive waste’s radioisotope analysis in Radioactive Waste Form Test Facility which is used in a separated room for analysis. This room will be released in nonradiation controlled area, therefore those devices will be moved to non-controlled area and keep using. Last April self-disposal was reported to the regulatory body and got acceptance last May. Those devices were moved to non-controlled area last July. This case will be good example for reuse equipment which stop using in radiation controlled area but can keep used.
        122.
        2022.10 구독 인증기관·개인회원 무료
        In operating or permanently shut down nuclear power plants which were built between 1970s and 1990s, asbestos was widely used for ceiling materials, wall materials, and gaskets. Furthermore, it was mainly treated as a heat-resistant material like insulation. In Kori Unit 1, radioactive asbestos was replaced or removed through maintenance and repair in the containment building during the operation period of about 40 years, but radioactive asbestos still remains that need to be partially dismantled. Generally, it is more difficult to handle because it belongs to two different waste categories, radioactive waste and hazardous waste. In addition, the risk increases further due to radioactivity with the asbestos hazards itself. Therefore, it is very important to accurately determine the amount of radioactive asbestos waste and to evaluate the treatment method and disposal reduction rate before the decommissioning is started. According to the Korean Waste Management Act, three methods are recommended for the asbestos (hazardous waste) treatment: landfill, solidification, and high-temperature melting. Landfill is commonly used in Korea and the United States while high-temperature melting and solidification are additionally recommended only in Korea. Considering the situation in Korea, landfill is not appropriate due to the limitations of landfill capacity and potential risks (hazards still remain). Therefore, the other two methods can be considered sufficiently in terms of safety, detoxification, and reduction rate. This paper evaluates the amount of radioactive asbestos waste at Kori Unit 1 based on the actual asbestos building material data (as of February 2022) of the Asbestos Management Comprehensive Information Network. Vitrification is considered as a sufficient alternative for treating radioactive asbestos waste. And, it is checked whether the vitrified waste through the high-temperature melting method, plasma torch, meets the requirements such as detoxification, compressive strength and leachability for storage and disposal stability. It is expected to be useful to prepare a radioactive mixed waste management standard and to reduce the disposal cost through the reduction of final waste.
        123.
        2022.10 구독 인증기관·개인회원 무료
        The fuel fabrication facility has been built and is being operated by KAERI since licensing research reactor fuel fabrication in 2004. After almost 20 years of operation, outdated equipment for fabrication or inspection has been replaced by automated, digitalized ones to assure a higher quality of nuclear fuels. However, the generation of a large amount of radioactive waste is another concern for the replacement in terms of its volume and various types of it that should be categorized before disposal. The regulatory body, NSSC (Nuclear Safety and Security Commission) released a notice related to the classification of radioactive wastes, and most accessory equipment can be classified into the clearance levels, called self-disposal waste. In this study, the practice of self-disposal of metal radioactive waste is carried out to reduce its volume and downgrade its radioactivity. For metal radioactive waste, which is expected to occupy the most amount, analysis status and legal limitations were performed as follows: First, the disposal plan was established after an investigation of the use history for equipment. Second, those were classified by types of materials, and their surface radio-contamination was measured for checking self-disposable or not. After collecting data, the plan for the self-disposal was written and submitted to the Korea Institute of Nuclear Safety (KINS) for approval.
        124.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive waste containing cellulosic materials such as cotton, paper and wood are being disposed in Low-and intermediate-level radioactive waste disposal site in Gyeongju. Cellulose has recently emerged great issue in terms of disposal site safety as it can be decomposed into an organic complex compound, ISA (isosaccharinic acid), under strong alkali conditions (pH 12.5 or higher) formed by the hydrated cement, to accelerate the mobility of the radionuclides in the disposal facility. However, in Korea, there are insufficient criteria for confirming the suitability for disposal of low-and intermediatelevel radioactive wastes including cellulose, and there is no specific method for evaluating the total amount of waste to confirm the suitability of disposal. Therefore, the method of SKB (Swedish Nuclear and Fuel Management Company), which has established acceptance criteria related to the physicalchemistry safety of cellulose, is analyzed to suggest a method for deriving the amount of cellulosecontaining waste disposal. Cellulose, an organic complexing agent, is an important consideration for safety case at the Swedish low-and intermediate-level radioactive waste disposal site SFR. SKB calculated the amount of cellulose generated by separately labeling cellulose-containing wastes of 1-2BMA, Silo and 1BTF (SKB 2013). BLA, a low-level radioactive waste disposal facility, is not considered due to its low radionuclide inventory (~0.2% of SFR’s total radionuclide inventory, SKB 2013). To calculate the amount of cellulose that can be disposed of, information on the mass and volume of hydrated cement (concrete waste, cement solidification waste, disposal container, grouting, disposal shed), the concentration of ISA absorbed in the hydrated cement, and the concentration of ISA dissolved in the groundwater which were used. In addition, the total disposable amount was calculated using the cellulose degradation rate, composition ratio, and the cellulose containing waste volume.
        125.
        2022.10 구독 인증기관·개인회원 무료
        Korea Radioactive Waste Agency (KORAD), regulatory body and civic groups are calling for an infrastructure system that can more systematically and safely manage data on the results of radioactive waste sampling and nuclide analysis in accordance with radioactive waste disposal standards. To solve this problem, a study has been conducted on the analysis of the nuclide pattern of radioactive waste on the nuclide data contained in low-and intermediate-level radioactive waste. This paper will explain the optimal repackaged algorithm for reducing radioactive waste based on previous research results. The optimal repackaged algorithm for radioactive waste reduction is comprised based on nuclide pattern association indicators, classification by nuclide level of small-packaged waste, and nuclide concentration. Optimization simulation is carried out in the order of deriving nuclide concentration by small-packaged, normalizing drum minimization as a function of purpose, normalizing constraints, and optimization. Two scenarios were applied to the simulation. In Scenario 1 (generating facilities and repackaged by medium classification without optimization), it was assumed that there are 886 low-level drums and 52 very low-level drums. In Scenario 2 (generating facilities and repackaged by medium classification with optimization), 708 and 230 drums were assigned to the low-level and very low-level drums, respectively. As a result of the simulation, when repackaged in consideration of the nuclide concentration and constraints according to the generating facility cluster & middle classification by small package (Scenario 2) the low-level drum had the effect of reducing 178 drums from the baseline value of 886 drums to 708 drums. It was found that the reduced packages were moved to the very low-level drum. The system that manages the full life-cycle of radioactive waste can be operated effectively only when the function of predicting or tracking the occurrence of radioactive waste drums from the source of radioactive waste to the disposal site is secured. If the main factors affecting the concentration and pattern of nuclides are systematically managed through these systems, the system will be used as a useful tool for policy decisions that can prevent human error and drastically reduce the generation of disposable drums.
        126.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive cesium is a heat generated and semi-volitile nuclide in spent nuclear fuel (SNF). It is released gasous phase by head-end treatment which is a pretreatment of pyroprocessing. One of the capturing methods of gasous radioactive cesium is using zeolite. After ion-exchanged zeolite, it is transformed to ceramic waste form which is durable ceramic structure by heat treatment. Various ceramic wasteforms for Cs immobilization have been researched such as cesium aluminosilicate (CsAlSi2O6), cesium zirconium phosphate (CsZr2(PO4)3), cesium titanate (CsxAlxTi8-xO16, Cs2TiNb6O18) and CsZr0.5W1.5O6. The cesium pollucite is composed to aluminosilicate framework and cesium ion incorporated in matrix materials lattices. Many researchers are reported that the pollucite have high chemical durability. In this study, the Cesium pollucite was fabricated using mixtures of aluminosilicate denoted Absorbent product (AP) and Cs2CO3 by calcination and pelletized by cold pressing. The characterization of fabricated pollucite powder and pellets was analyzed by XRD, TGA, SEM, SEMEDS and XRF. The chemical durability of pollucite powder was evaulated by PCT-A and ICP-MS and OES. Thus, the optimal pressure condition without breaking the pellets which is low Cs2O/AP ratio and pelletizing pressure was selected. The long-term leaching test was performed using MCC-1 method for 28 days with the fabricated pollucite pellets. The leachate of leaching test was allard groundwaster and Deionized water and replaced 5 contact periods which is 3 hours, 3 days, 7 days, 14 days and 28 days and analyzed by ICPMS. The leaching rate was shown two stages. The first stage was rapid and relatively large amount of nuclides were leached. The leaching rate was decreased in the second stage. The fractional release rate of this study was shown same trend. These results were similar to previous studies.
        127.
        2022.10 구독 인증기관·개인회원 무료
        In the case of decommissioning of a nuclear power plant, it is expected that a significant amount of VLLW and LLW that need to be disposed of are also expected. Conventional reduction technology is a method of extracting or removing radionuclides from waste, but this project is being carried out for the purpose of obtaining a reduction effect through the development of a material that treats another radioactive waste using radioactive waste. In this paper, the technology of impregnating LiOH capable of adsorbing radiocarbon to the gas filter material manufactured from concrete and soil waste as raw materials and the radiocarbon removal performance were reviewed. In this study, a raw material of ceramic filter was prepared by mixing concrete and soil waste with a powder of 40 m or less, and after sintering at 1,250°C, 5wt% to 40wt% of LiOH is impregnated with a filter capable of adsorbing carbon dioxide. was prepared. The prepared filter used ICP-OES and XRD to confirm the LiOH deposition result, and the concentration of carbon dioxide discharged through the carbon dioxide adsorption device was confirmed. It was possible to obtain the result that the amount of adsorption was changed depending on the flow rate of carbon dioxide supplied and the amount of material. Through this, it was possible to confirm the possibility of power generation in the adsorption performance of gas. In this study, after crushing waste concrete and waste soil, powders of 40 m or less were mixed with other additives to prepare raw materials for ceramic filters, and sintered at 1,250°C to manufacture filters. 5wt% to 40wt% of LiOH was impregnated on the prepared filter to give functionality to enable carbon dioxide adsorption. The results of LiOH deposition were confirmed using ICP-OES and XRD, and the change in the concentration of carbon dioxide emitted through a separately prepared adsorption device was confirmed. It was possible to obtain the result that the amount of adsorption was changed according to the flow rate of carbon dioxide supplied and the amount of material, and the possibility of developing a material for radioactive waste treatment using radioactive waste was confirmed when the porosity and specific surface area of the filter material were increased.
        128.
        2022.10 구독 인증기관·개인회원 무료
        There are generally two kinds of spent filter; one is spent filter media for mainly gaseous purification such as HEPA filter, the other is spent filter cartridge for liquid purification such as CVCS BRS cartridge type filter. The spent filter cartridge from liquid purification system has been storing in special shielding space in auxiliary building in NPPs since the beginning of 2006 according to the long term storage strategy for decaying short lived radionuclide and gaining the time for selecting practical treatment technology before final packaging. The spent filter cartridges generated Kori-1 reactor vary in their sizes as in length from 913 mm to 290 mm and range in radiation level from several hundred mSv per hour to below mSv per hour . It is high time that the spent filter cartridge is treated and packaged because LILW repository in Wolsung area is operating and Kori-1 reactor is scheduled to decommission. The spent filter cartridge is one of the wet solid wastes required of solidification. It is difficult for the spent filter cartridge to solidify because of their shape, structure, physical and chemical characteristics in addition to having high radiation level. NSSC notice defines that solidification of wet solid wastes include that solid material such as spent filter is encapsulated with cement, etc. as a form of macro-encapsulation. The radioactive waste acceptance criteria describes that non-homogeneous waste having above 74,000 Bq/g such as spent filter, dry active waste should be encapsulated with qualified material. Homogeneous waste such as spent resin, sludge, concentrated waste (liquid waste evaporator bottoms), etc. should be solidified complied with requirements except that spent filter which is allowed to encapsulate. It is needed to guide to the practice of these two requirements for spent filter. The sampling and test method is different between homogeneous solidification waste form and spent filter cartridge encapsulation waste form. For example, how core sample can be taken and how void space can be measured among spent filter cartridge in encapsulation waste form. The technical evaluation report for spent filter cartridge polymer encapsulation by US NRC has been reviewed and the technical position of US NRC was identified. As a result of review, improvement fields of waste acceptance criteria for spent filters are pointed out, and the technical position of US NRC for spent filter cartridge solidification is summarized. The recommendation on improvement directions for spent filter cartridge encapsulation is suggested.
        129.
        2022.10 구독 인증기관·개인회원 무료
        The 2-round Delphi survey and Focus Group Interview (FGI) survey method, in this study, are sequentially applied for the level analysis of the high-level radioactive waste (HLW) management technologies, that are classified into transport/storage, site evaluation, and disposal categories. The 2- round Delphi survey was conducted on domestic 56 experts in the HLW field in Korea, and survey answers were managed with questionnaires distributed by e-mail. In the FGI survey, domestic 24 experts from management field were formed into three groups to conduct in-depth interviews. Past research achievements including journal papers, intellectual properties and the expert opinions presented at expert hearing on HLW technology were used as reference materials. As a result of the survey, in this study, the average domestic technology level compared to the leading countries was 83.1% in transport area, 79.6% in storage area, 62.2% in site evaluation area, and 57.4% in disposal area, respectively. When compared to the former level analysis results in 2017, technology level of transport-storage area increased by 8.6%, and the site evaluation-disposal technology area decreased by 7.27%. The highest factor that increase the level of technology in the transport-storage field was due to the increased R&D program resulting on journal papers, intellectual properties. In addition, the decrease factor in the level of technology in the site evaluation-disposal field was mainly due to relatively low R&D program when compared to the leading countries. Suggested method for the level survey can be used to find out the basic data of the lower tech technologies, to estimate the efficient research budgets and to prepare the R&D human resources. With this regards, R&D roadmap can be matured with suggested prediction method for the domestic technology level on HLW.
        130.
        2022.10 구독 인증기관·개인회원 무료
        Copper is used for deep geological disposal canisters of spent nuclear fuels, because of excellent corrosion resistance in an oxygen-free environment. However, sulfide formation during the long-term exposure under deep geological disposal condition can be harmful for the integrity of copper canisters. Sulfur around the canisters can diffuse along grain boundaries of copper, causing grain boundary embrittlement by the formation of copper sulfides at the grain boundaries. The development of copper alloys preventing the formation of copper sulfides along grain boundaries is essential for the longterm safety of copper canisters. In this research, the mechanisms of copper sulfide formation at the grain boundary are identified, and possible alloying elements to prevent the copper sulfide formation are searched through the first principle calculations of solute atom-vacancy binding energy and the molecular dynamics calculation of grain boundary segregation energy. The comparison with the experimental literature results on the mitigation of copper embrittlement confirmed that the theoretically identified mechanisms of copper sulfide formation and the selected alloy elements are valid. Thereafter, binary copper alloys were prepared by using a vacuum arc melting furnace. Sulfur was added during casting of the copper alloys to induce the sulfide formation. The cast alloys were cold-rolled into a plate after homogenization heat treatment. The microstructure and mechanical property of each alloy were investigated after recrystallization in a vacuum tube heat treatment furnace. The copper alloys developed in this study are expected to contribute in increasing the long-term safety of deep geological disposal copper canisters by reducing the embrittlement caused by the sulfide formation.
        131.
        2022.10 구독 인증기관·개인회원 무료
        The analysis of uranium migration is crucial for the accurate safety assessment of high-level radioactive waste (HLW) repository. Previous studies showed that the migration of the uranium can be affected by various physical and chemical processes, such as groundwater flow, heat transfer, sorption/ desorption and, precipitation/dissolution. Therefore, a coupled Thermal-Hydrological-Chemical (THC) model is required to accurately simulate the uranium migration near the HLW repository. In this study, COMSOL-PHREEQC coupled model was used to simulate the uranium migration. In the model, groundwater flow, heat transfer, and non-reactive solute transport were calculated by COMSOL, and geo-chemical reaction was calculated by PHREEQC. Sorption was primarily considered as geo-chemical reaction in the model, using the concept of two-site protolysis nonelctrostatic surface complexation and cation exchange (2 SP NE SC/CE). A modified operator splitting method was used to couple the results of COMSOL and PHREEQC. Three benchmarks were done to assess the accuracy of the model: 1) 1D transport and cation exchange model, 2) cesium transport in the column experiment done by Steefel et al. (2002), and 3) the batch sorption experiment done by Fernandes et al. (2012), and Bradbury and Baeyens (2009). Three benchmark results showed reliable matching with results from the previous studies. After the validation, uranium 1D transport simulation on arbitrary porewater condition was conducted. From the results, the evolution of the uranium front with sequentially saturating sites was observed. Due to the limitation of operator splitting method, time step effect was observed, which caused the uranium to sorbed at further sites then it should. For further study, 3 main tasks were proposed. First, precipitation/ dissolution will be added to the reaction part. Second, multiphase flow will be considered instead of single phase Darcy flow. Last, the effect of redox potential will be considered.
        132.
        2022.10 구독 인증기관·개인회원 무료
        The structural integrity of concrete silos is important from the perspective of long-term operation of radioactive waste repository. Recently, the application of acoustic emission (AE) is considered as a promising technology for the systematic real-time health monitoring of concrete-like brittle material. In this study, the characteristics of AE wave propagation through concrete silo of Gyeongju radioactive waste repository were evaluated under the effects of groundwater and temperature for the quantitative damage assessment. The attenuation coefficients and absolute energies of AE waves were measured for the temperature cases of 15, 45, 75°C under dry and saturated concrete specimens, which were manufactured based on the concrete mix same as that of Gyeongju concrete silo. The geometric spreading and material loss were taken into account with regard to the wave attenuation coefficient. The attenuation coefficient shows a decreasing pattern with temperature rise for both dry and saturated specimens. The AE waves in saturated condition attenuate faster than those in dry condition. It is found that the effect of water content has a greater impact on the wave attenuation than the temperature. The results from this study will be used as valuable information for estimating the quantitative damage at the location micro-cracks are generated rather than the AE sensor location.
        133.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate- level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.
        4,000원
        134.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nuclear power plant decommissioning generates significant concrete waste, which is slightly contaminated, and expected to be classified as clearance concrete waste. Clearance concrete waste is generally crushed into rubble at the site or a satellite treatment facility for practical disposal purposes. During the process, workers are exposed to radiation from the nuclides in concrete waste. The treatment processes consist of concrete cutting/crushing, transportation, and loading/unloading. Workers’ radiation exposure during the process was systematically studied. A shielding package comprising a cylindrical and hexahedron structure was considered to reduce workers’ radiation exposure, and improved the treatment process’s efficiency. The shielding package’s effect on workers’ radiation exposure during the cutting and crushing process was also studied. The calculated annual radiation exposure of concrete treatment workers was below 1 mSv, which is the annual radiation exposure limit for members of the public. It was also found that workers involved in cutting and crushing were exposed the most.
        4,000원
        135.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        경주 방폐물 처분시설의 1단계 시설로 건설된 지하 사일로 구조는 2014년에 10만 드럼 규모로 완공되어 현재 운영중에 있다. 지하 사일로 구조는 지름 25m, 높이 50m로써 방폐물을 저장하는 실린더부분과 돔 부분으로 구성되어 있으며, 돔부분은 운영터널과 연결 되는 하부 돔 부분과 상부 돔 부분으로 구분할 수 있다. 지하 사일로 구조의 벽체는 철근콘크리트 라이너이고, 두께는 약 1m이다. 본 논문에서는 지하 사일로 구조의 건설과정 및 운영과정의 단계별 유한요소해석을 수행하였다. SMAP-3D 프로그램을 사용하여 2차원 축대칭 유한요소해석을 수행하였다. 2차원 축대칭 유한요소모델의 신뢰성을 검토하고자 3차원 유한요소해석도 수행하였다. 본 논문 에서는 지하 사일로 구조의 구조거동을 분석하고 구조적 안전성을 검토결과를 제시하였다.
        4,000원
        136.
        2022.05 구독 인증기관·개인회원 무료
        As the design life of nuclear power plants are coming to the end, starting with Kori unit 1, nuclear power related organizations have been actively conducted research on the treatment of nuclear power plant decommissioning waste. In this study, among various types of radioactive waste, stabilization and volume reduction experiments were conducted on radioactive contaminated soil waste. Korea has no experience in decommissioning nuclear power plants, but a large amount of radioactively contaminated soil waste was generated during the decommissioning of the KAERI research reactor (TRIGA Mark- II) and the uranium conversion facility. This case shows the possibility of generating radioactive soil waste from nuclear power plants and nuclear-related facilities sites. Soil waste should be solidified, because its fluidity and dispersibility wastes specified in the notification of the Korea Nuclear Safety and Security Commission. In addition, the solidified waste forms should have sufficient mechanical strength and water resistance. Numerous minerals in the soil are components that can make glass and ceramics, for this reason, glass-ceramic sintered body can be made by appropriate heat and pressure. The sintering conditions of soil were optimized, in order to make better economical and more stable sintered body, some additives (such as additives for glass were mixed) with the soil and sintering experiments were conducted. Uncontaminated natural soil was collected and used for the experiment after air drying. Moisture content, pH, bulk density, and organic content were measured to understand the basic properties of soil, and physicochemical properties of the soil were identified by XRD, XRF, TG, and SEM-EDS analysis. In order to understand the distribution by particle size of the soil, it was divided into Sand (0.05–2 mm) and Fines (< 0.05 mm). The green body was manufactured in the form of a cylinder with a diameter of 13mm and a height of about 10mm. Appropriate pressure (> 150 MPa) was applied to the soil to make a green body, and appropriate heat (> 800°C) was applied to the sintered body to make a sintered body. The sintering was conducted in a muffle furnace in air conditions. The volume reduction and compressive strength of the sintered body for each condition were evaluated.
        137.
        2022.05 구독 인증기관·개인회원 무료
        Sulfate-rich waste powder containing a radioactive nuclide is generated from chemical decontamination process and radioactive liquid waste treatment using ion exchange resin. The radioactive sulfate-rich waste powder should be stabilized for final disposal. The techniques for immobilization of the radioactive sulfate-rich waste powder such as hydraulic cement, geopolymer, and iron phosphate glass have been applied, however, there are limitation in these techniques. Firstly, the hydraulic cement cannot applied to the wastes containing high concentration of sulfate because the expansion, cracks, and disintegration can be happened in the waste form. Geopolymer has a low density although they can be used as a good binder. The iron phosphate glass can be utilized, however, a considerable amount of SO2 gas is emitted due to the high sintering temperature. In this study, immobilization of radioactive sulfate-rich waste powder was carried out to resolve above problems by applying low temperature sintering method using a low-melting glass. As a result, it was confirmed that the waste form has a high bulk density. The compressive strength of the waste form was over 40 MPa, which is higher than the acceptance criteria (≥ 3.44 MPa). From ANS 16.1 test, it was verified that the waste form met the acceptance criteria of the leachability index (≥ 6). It was also confirmed that the waste form was chemically durable through product consistency test (PCT). In addition, the chemical stabilities of waste forms were compared following the sintering condition and the composition of the waste forms. The difference of the chemical stability was explained by difference in the abundance of chemical form obtained from the sequential extraction test.
        138.
        2022.05 구독 인증기관·개인회원 무료
        Decontamination of spent nuclear fuel from decommissioned nuclear reactors is crucial to reduce the volume of intermediate-level waste. Fuel cladding hulls are one of the important parts due to high radioactivity. Their decontamination could possibly enable reclassification as low-level waste. Fuel cladding hulls used in research reactors and being developed for conventional light water reactors are Al-Mg and Fe-Cr-Al alloys, respectively. Therefore, the recovery of these component metals after decontamination is necessary to reduce the volume of highly radioactive waste. Electrochemical approach is often chosen due to its simplicity and effectiveness. Non-aqueous solvents, such as molten salts (MSs) and ionic liquids (ILs), are preferred to aqueous solvents due to the absence of hydrogen evolution. However, MSs and ILs are limited by high temperature and high synthesis cost, along with toxicity issues. Deep eutectic solvents (DESs) are synthesized from a hydrogen bond acceptor (HBA) and donor (HBD) and exhibit outstanding metal salt solubility, wide electrochemical window, good biocompatibility, and economic production process. These characteristics make DES an attractive candidate solvent for economic, green, and efficient electrodeposition compared with aqueous solvents such acids or nonaqueous solvents such as MSs or ILs. In this research, the feasibility of electrodeposition of Al-Mg and Fe-Cr-Al alloys in ChCl:EG, the most common DES synthesized from choline chloride (ChCl) and ethylene glycol (EG), will be tested. A standard three-electrode electrochemical cell with an Au plated working electrode and Al wires for counter and reference electrodes is utilized. Two electrolyte solutions (Al-Mg and Fe-Cr-Al) are prepared by dissolving 100 mM of each anhydrous metal chloride salts (AlCl3, MgCl2, CrCl3, and FeCl2) in ChCl:EG. Cyclic voltammogram (CV) is measured at 5, 10, 15, and 20 mV·s−1 to observe the redox reactions occurring in the solutions. Electrodeposition of each alloy is performed via chronoamperometry at observed reduction potentials from CV measurements. The deposited surfaces and cross-sections are examined by scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) to analyze the surface morphology, cross-section composition, and thickness. Authors anticipate that the presence of different metals will greatly affect the possibility of electrodeposition. It is expected that although all metals are distributed throughout the surface, the morphology, in terms of particle size and shape, would differ depending on metals. Different metals will be deposited by layers of an approximate thickness of a few μm each. This research will illustrate a potential for recovery and electrodeposition of other precious radioactive metals from DES.
        139.
        2022.05 구독 인증기관·개인회원 무료
        As the decommissioning of nuclear power plants increases, there is an increasing interest in the amounts of radioactive waste. Especially, the radiation dose limit for packaging of radioactive wastes shall not exceed 2 mSv·h−1 and 0.1 mSv·h−1 on contact and at 2 m, respectively in South Korea. The DEMplus provides various environmental geometry and all properties such as materials, absorptions, and reflections and the estimation of the radiation dose rates is based on the radiation interactions of the designed 3D geometry model. With the consideration of the radiation dose rate by using DEMplus and its strategy of packaging plan, the radiation shielding was optimized and estimated in this paper. The modular shielded containers (MSC) with shielding inserted were used for radioactive wastes that require shielded packaging. In order to verify the accuracy of the estimated radiation dose rate by using DEMplus, the estimated results were compared with those obtained using MicroShield. The trends of the estimated radiation dose rates using DEMplus and the estimation of MicroShield were similar to each other. The results of this study demonstrated the feasibility of using DEMplus as a means of estimating the radiation dose limit in packaging plan of the radioactive waste.
        140.
        2022.05 구독 인증기관·개인회원 무료
        Starting with the permanent shutdown of Kori Unit 1, the first waste treatment facility in Korea will be built on the Kori site. In this facility, major process such as decontamination, cutting, radiation measurement and volume reduction of decommissioning waste are performed, and radioactive liquid waste is generated by the waste treatment process and personnel decontamination. The generated liquid waste is finally discharged to the sea through radioactive monitoring system after sufficient treatment to meet the standard radiological effluent control. Whereas the treated liquid waste is additionally diluted through the circulation water discharge conduit and discharged to the sea in the operating nuclear power plants, there is no circulation water in the waste treatment facility. Therefore, a new discharging method for dilution after treatment should be considered. In this paper, the treatment concept and discharge method of radioactive liquid waste system in waste treatment facility are reviewed.