검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 399

        121.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Powder injection molding (PIM), which combines the advantages of powder metallurgy and plastic injection molding technologies, has become one of the most efficient methods for the net-shape production of both metal and ceramic components. In this work, plasma display panel glass bodies are prepared by the PIM process. After sintering, the hot isostatic pressing (HIP) process is adopted for improving the density and mechanical properties of the PIMed glass bodies. The mechanical and thermal behaviors of the prepared specimens are analyzed through bending tests and dilatometric analysis, respectively. After HIPing, the flexural strength of the prepared glass body reaches up to 92.17 MPa, which is 1.273 and 2.178 times that of the fused glass body and PIMed bodies, respectively. Moreover, a thermal expansion coefficient of 7.816 × 10−6/oC is obtained, which coincides with that of the raw glass powder (7.5-8.0 × 10−6/oC), indicating that the glass body is fully densified after the HIP process.
        4,000원
        122.
        2016.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We have investigated the crystallization mechanism of the lithium disilicate (Li2O-2SiO2, LSO) glass particles with different sizes by isothermal and non-isothermal processes. The LSO glass was fabricated by rapid quenching of melt. X-ray diffraction and differential scanning calorimetry measurements were performed. Different crystallization models of Johnson- Mehl-Avrami, modified Ozawa and Arrhenius were adopted to analyze the thermal measurements. The activation energy E and the Avrami exponent n, which describe a crystallization mechanism, were obtained for three different glass particle sizes. Values of E and n for the glass particle with size under 45 μm, 75~106 μm, and 125~150 μm, were 2.28 eV, 2.21 eV, 2.19 eV, and ~1.5 for the isothermal process, respectively. Those values for the non-isothermal process were 2.4 eV, 2.3 eV, 2.2 eV, and ~1.3, for the isothermal process, respectively. The obtained values of the crystallization parameters indicate that the crystallization occurs through the decreasing nucleation rate with a diffusion controlled growth, irrespective to the particle sizes. It is also concluded that the smaller glass particles require the higher heat absorption to be crystallized.
        4,000원
        123.
        2015.12 구독 인증기관 무료, 개인회원 유료
        유리를 매체로 하여 빛과 색을 종합시킨 스테인드글라스는 그 시작부터 건축적인 예 술이었다. 고딕건축을 통하여 최고조에 이른 스테인드글라스가 르네상스의 자연주의, 사실주의 회화와 벽화의 전개로 차츰 쇠퇴하면서 거의 잊혀 지는듯 하였으나 20세기 초 부터 다시 부각을 드러내기 시작하였다. 본 연구에서는 일반건축 중에서도 상업공간에 도입된 건축스테인드글라스로 연구범위를 좁혔으며, 상업공간에 도입된 국내외 현황을 서술하고 앞으로의 발전 가능성에 대해 알아보았다. 이 논문을 통해 국내외의 건축스테인드글라스의 현황을 정확히 파악하여 앞으로의 발전방향을 잡고 상업공간 뿐만 아니라 스테인드글라스의 도입이 필요한 여러 일반건 축물들에 대한 연구 또한 끊임없이 해나가야 할 계기가 생겼다. 또한 기존에 있는 제작 기법을 바탕으로 새로운 기법연구와 건축을 포함한 여러 전문가들의 협업으로 좀 더 전문적인 지식으로 스테인드글라스를 연구하고 발전시키는데 본 논문의 의미가 있다 하겠다.
        6,400원
        124.
        2015.11 구독 인증기관 무료, 개인회원 유료
        In order to select the supporting points for large glass panels used for TFT-LCD monitors, an optimization method selecting the supporing points is presented. In this method we reduce the problem of 1 degree of freedom. ANSYS optimization module is used and optimization criterion is to minimize the maximum deflection.
        3,000원
        126.
        2015.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized Zr41.2Ti13.8Cu12.5Ni10Be22.5 metallic glass powder under of 0.2 kJ generated by a 450 μF capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at 150oC for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped Fe2O3 and needle-shaped Fe3O4 are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.
        4,000원
        127.
        2015.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some sp-sp 2 linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.
        4,000원
        129.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The expansion of the display market could mass-produce the product which becomes the super-slim and ultra-lighting according to the demand of customer. This change etched the mobile display panel in order to make the thin glass. The wet etching refers to the process of removing selectively the unnecessary part in order to form the circuit pattern among the semi-conductor or the LCD manufacturing process. The wet etching can progress the etching about a large amount at a time but the thickness of glass is not smooth or not etched according to the process condition. In this study, the defect factor in the etching process tries to be analyze. The experimental design was established and the processing condition was optimized in order to minimize under non-etch part generation by the experiment of design.
        4,000원
        130.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Synthesis of nano-silica using water glass in a Sol-Gel process is one of several methods to manufacture nano-silica. In nano-silica synthesized from water glass, there are various metal impurities. However, synthesis of nano-silica using water glass in a Sol-Gel process is an interesting method because it is relatively simple and cheap. In this study, nano-silica was synthesized from water glass; we investigated the effect of pH on the synthesis of nano-silica. The morphology of the nanosilica with pH 2 was flat, but the surface of the nano-silica with pH 10 had holes similar to small craters. As a result of ICPOES analysis, the amount of Na in the nano-silica with pH 2 was found to be 170 mg/kg. On the other hand, the amount of Na in the nano-silica with pH 10 was found to be 56,930 mg/kg. After calcination, the crystal structure of the nano-silica with pH 2 was amorphous. The crystal structure of the nano-silica with pH 10 transformed from amorphous to tridymite. This is because elemental Na in the nano-silica had the effect of decreasing the phase transformation temperature
        4,000원
        131.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구형 충격을 받는 필름 코팅된 유리 시스템의 거동을 개발한 유한 요소 프로그램에 의하여 연 구하고자 한다. 충격 거동을 예측하기 위하여 Sun의 higher order beam theory와 Kurapati의 generalized power law와 연계한 새롭고 효과적인 동적 유한 요소법을 제안한다. 필름 코팅된 유리 시 스템과 모놀리식 유리에 대하여 접촉력, 변형량, 운동에너지, 속도 및 응력 등을 계산한 후 결과를 비교 검토하여 코팅 시스템의 필름이 충격 손상을 방지하고 충격 저항이 우수하다는 것을 정성적 및 정량적으로 규명하였다.
        4,000원
        132.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of titanium dioxide (TiO2) on the properties of color conversion glasses was examined for glasses based on BaO-ZnO-B2O3-SiO2. One glass sample, containing 25 mol% of each component, was used as a reference; the other three glass samples contained 1, 3, and 5 mol% TiO2, respectively. The four color conversion glass samples were prepared by sintering a mixture of glass frits and a YAG:Ce+ phosphor. The characteristics of the color conversion glass samples, such as luminous efficacy, luminance, CIE (Commission International de I'Eclairage) chromaticity, CCT (Correlated Color Temperature), and CRI (Color Rendering Index) were analyzed according to the PL spectrum. The refractive index of the glass samples was found to increase with the titanium dioxide content. In conclusion, luminous efficacy of color conversion glasses increased as the content of TiO2 was raised in the glass matrix.
        4,000원
        134.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).
        4,000원
        136.
        2014.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we optimized dissolution the dissolution conditions of porous amorphous powder to havehigh specific surface area. Porous metallic glass(MG) granules were fabricated by selective phase dissolution, in whichbrass is removed from a composite powder consisting of MG and 40 vol.% brass. Dissolution was achieved throughvarious concentrations of H2SO4 and HNO3, with HNO3 proving to have the faster reaction kinetics. Porous powderswere analyzed by differential scanning calorimetry to observe crystallization behavior. The Microstructure of milledpowder and dissolved powder was analyzed by scanning electron microscope. To check for residual in the dissolvedpowder after dissolution, energy dispersive X-ray spectroscory and elemental mapping was conducted. It was confirmedthat the MG/brass composite powder dissolved in 10% HNO3 produced a porous MG granule with a relatively high spe-cific surface area of 19.60 m2/g. This proved to be the optimum dissolution condition in which both a porous internalgranule structure and amorphous phase were maintained. Consequently, porous MG granules were effectively fabricatedand applications of such structures can be expanded.
        4,000원
        137.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The monolithic glass, without damage, under impact loading, is studied by the use of the coded finite element program. To predict the impact energy of monolithic glass like annealed glass and tempered glass, a finite element approach based on Sun's higher-order beam finite element and impact energy equation is proposed. For this purpose, the contact force-displacements, energy-displacement histories and velocity-acceleration histories etc. are calculated during all impact processes. And, also, by the calculations of the coded FEM program, the geometric parameter like thickness is investigated to determine their impact energy prediction of monolithic glass.
        4,000원
        138.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The monolithic glass, without damage, subjected to ballistic impact, is studied by the use of the coded finite element program. To analyze the impact response of monolithic glass like ordinary annealed glass and tempered glass, a finite element approach based on the Hertzian contact law and Sun's higher-order beam finite element is proposed. For verifying effectiveness of this finite element program, the contact force history is analyzed in conjunction with the loading and unloading processes. And, also, the time history of the impact responses such as the strain and stress according to the thickness changes due to transverse impact at the center are calculated
        4,000원
        139.
        2014.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.
        4,000원