검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 175

        163.
        2015.05 서비스 종료(열람 제한)
        Livestock wastewater has high potential as one of energy resources because this wastewater is including high organic matter. Therefore the studies attempting to bio-gasification and bio-electricity generation using livestock wastewater is being tried. The pre-treatment system used in this study was the purpose to control the ammonia nitrogen in conjunction with the system and the microbial fuel cell. Because ammonia nitrogen is to inhibit the electricity generation efficiency of microbial fuel cell. These studies were to ascertain the effect of oxidants on the nitrogen removal in the pre-treatment system using catalyst and microbubbles to treat the ammonia nitrogen. The three kinds of oxidant such as air, oxygen (O2), and hydrogen peroxide (H2O2) were used to know the ammonia and nitrate nitrogen removal. This system was operated with four kinds of conditions. First method is O2 gas with 100 mL/min with 1ml of 30% H2O2 was supplied to the wastewater. A second method, the O2, with 400 and 1,000 mL/min was supplied through the flow meter before livestock wastewater was flow in the reactor. The last method, air was supplied 800 mL/min. The nitrate removal had no significant difference all conditions except the air supply. On the other hand, the ammonia and nitrate nitrogen removal when oxygen was supplied with 1000 mL O2/min was higher than that of the other conditions. The removal rate when air was supplied 800 mL/min was similar to the value in the supplied with 400 ml O2/min. This result showed that oxidant was important factor to improve the ammonia nitrogen removal rate.
        164.
        2015.05 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the applicability of the microbial fuel cell for the combined treatment of food waste water and landfill leachate. Contents of the study was to develop a carbon-containing electrode material radially to maximize microbial attachment. Also to evaluate the electric energy production efficiency by combining the electrode surface coating technology. By using a microbial fuel cell organic matter and nitrogen removal efficiency is evaluated for the food waste water and landfill leachate. BET to evaluate the surface characteristics of the developing electrode (Brunauer Emmett Teller) To evaluate the coating adhesion through measurement and to evaluate the adhesion characteristics micro-organism Weighing. Excellent electrical conductivity in the development electrode platinum, cobalt, by coating a catalyst such as palladium and to evaluate the electric energy generation efficiency. Lab. scale reactor capacity is a 5 L, and to configure the cross-section and the oxidizing electrode as cathode sequentially added.
        165.
        2015.05 서비스 종료(열람 제한)
        Livestock Wastewater shall cause a high concentration of organic matter and nutrients such as rivers because of the lake and groundwater contamination, such as the accumulation of nutrients in the soil contained in the manure, livestock wastewater containing large amounts of organic matter that will flow to the river or appeal If eutrophication, and comfortable living environment to cause harm, such as odor and pest damage and can. Organic waste and organic waste, such as the world has a direct interest in acquiring the available resources and the development of clean energy from waste is a growing desire, is expected to contribute to the environment from waste materials industry growth by developing innovative technologies such as direct electrical energy production. In the case of livestock waste water and high concentration of organic material in addition to containing ammonia nitrogen, nitrate nitrogen for nitrification is created due to the electron acceptor is used as the fuel cell according to this has been reported to decrease the efficiency of electricity production. Therefore, to derive the electricity production efficiency due to organic concentration and ammonia nitrogen concentration in order to apply a microbial fuel cell (MFC) livestock wastewater treatment process in this study, and to derive the energy production potential with livestock waste water through the study. Lab. scale Reactor fabrication and operation to try to derive the reaction factor of the optimum operating conditions in accordance with the livestock wastewater applied through the evaluation of trends and removal efficiency of organic matter and nutrients in the microbial fuel cell. In addition, from the final research results, I try to present the direction of future research for the improvement of application possibilities and microbial fuel cell power generation efficiency of microbial fuel cell in the livestock wastewater treatment facilities.
        166.
        2014.10 KCI 등재 서비스 종료(열람 제한)
        Sediment microbial fuel cell (SMFC), equipped with Zn, Al, Cu, Fe or graphite felt (GF) anode and marine sediment, was performed. Graphite felt was used as a common cathode. SMFC was single chambered and did not use any redox mediator. The aim of this work was to find efficient anodic material. Oxidation reduction potential (ORP), cell voltage, current density, power density, pH and chemical oxygen demand (COD) were measured for SMFC’s performance.. The order of maximum power density was 913 mWm-2 for Zn, 646 mWm-2 for Fe, 387.8 mWm-2 for Cu, 266 mWm-2 for Al, and 127 mWm-2 for graphite felt (GF). The current density over voltage was found to be strongly correlated with metal electrodes, but the graphite felt electrode, in which relatively weaker electricity was observed because of its bio-oriented mechanism. Metal corrosion reactions and/or a complicated microbial electron transfer mechanism acting around the anodic compartment may facilitate to generate electricity. We presume that more sophisticated selection of anodic material can lead to better performance in SMFC.
        167.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        This study was attempted to evaluate the change of microbial community in inoculums, lag, and stationary phase using the community level physiological profiles (CLPP) base on C-substrate utilization. It was to ascertain the characterizing microbial community over time in the enrichment step of microbial fuel cells. Microbial fuel cell is a device that converts chemical energy to electricity with aid of the catalytic reaction of microorganisms using C-substrate included wastewater. Microbial fuel cells enriched by a mixture of anaerobic digestive sludge of the sewage treatment plant and livestock wastewater were used. The current after enrichment was generated about 0.84 ± 0.06 mA. Microbial community in inoculums, lag and stationary phase used amine group, phosphorylated chemical group, and carboxylic acid group (some exclusion). However, phenolic compound did not use by microorganisms in lag and stationary phase. It means that there are not the microorganisms capable of decompose the phenol in microbial fuel cell enriched by livestock wastewater. In case of substrates of amino acid and carbohydrates group, these C-substrates were only used by microorganisms in the stationary phase. It may be that electrochemically active microorganisms (EAM) which we want to know should utilize the better these C-substrates than that of lag phase. This study showed that the electrochemically active bacteria that can be distinguished by electron changes of C-substrate utilization over time could be separated.
        170.
        2011.10 KCI 등재 서비스 종료(열람 제한)
        해양구조물 전력시스템은 독립형 전력체계를 구축하기 어렵다. 그러므로 해상용 전력시스템을 효과적으로 운영하기 위하여 연료전지 및 하이브리드 전력체계를 연동한 전력시스템을 구축하는 것이 중요하다. 본 연구에서는 연료전지 기반의 해양구조물용 전력체계 설계에 필요한 수소 발생 메카니즘, 사용 전력량 계산과정 등을 기초로 해상용 연료전지 기반의 전력체계를 설계하고, 설계된 전력 시스템을 LabVIEW 프로그램을 활용하여 시뮬레이션 및 분석하였으며, 이를 기반으로 해양구조물용 전력시스템 설계 방안을 제안하고자 한다.
        172.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. 0.57 W/㎡ Al/Graphite. Meanwhile, graphite-only electrodes produced max. 0.11 W/㎡ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was 0.64 W/㎡. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5∼36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.
        173.
        2008.12 KCI 등재 서비스 종료(열람 제한)
        Hydrogen gas is used as a fuel for the proton exchange membrane fuel cell (PEMFC). Trace amount of carbon monoxide present in the reformate H₂ gas can poison the anode of the PEMFC. Therefore, preferential oxidation (PROX) of CO is essential for reducing the concentration of CO from a hydrogen-rich reformate gas. In this study, conventional Pt/Al₂O₃catalyst was prepared for the preferential oxidation of CO. The effects of catalyst preparation method, additive, and hydrogen on the performances of PROX reaction of CO were investigated. Water treatment and addition of Ce enhanced catalytic activity of the Pt/Al₂O₃ catalyst at low temperature below 100℃.
        174.
        1996.10 KCI 등재 서비스 종료(열람 제한)
        A dual-porosity filmed agglomerate model for the porous cathode of the molten carbonate fuel has been investigated to predict the cell performance. A phenomenological treatment of molecular, kinetic and electrode parameters has been given. The major physical and chemical phenomena being modeled include mass transfer, ohmic losses and reaction kinetics at the electrodeelectrolyte interface. The model predicts steady-state cell performance given the above conditions that characterize the state of the electrode. Quasi-linearization and finite difference techniques are used to solve the coupled nonlinear differential equations. Also, the effective surface area of electrode pore was obtained by mercury porosimeter. The results of the investigation are presented in the form of plots of overpotential vs. current density with varied the electrode material, gas composition and mechanism. The predicted polarization curves are compared with the empirical data from 1 ㎠ cell. A fair correspondence is observed.
        175.
        1996.08 KCI 등재 서비스 종료(열람 제한)
        In the development of Molten Carbonate Fuel Cell, one of the serious problems is the dissolution of cathode material. Therefore, the development of the alternative cathode which is stable in molten carbonate is needed. In this research, the LiCoO2 was chosen as alternative cathode material. LiCoO2 powder was synthesized by high temperature calcination method and by citrate sol-gel method. And its structure and physical characteristics were analyzed by XRD, IR TGA and porosimeter. The conductivity and solubility of LiCoO2 electrode were also measured Homogeneous LiCoO2 powder was obtained by citrate sol-gel method at 445℃, however, obtained above 750℃ by high temperature calcination method. Homogeneous particle size distribution and fine powder were obtained by the citrate sol-gel method. LiCoO2 electrode showed higher electric conductivity (1.7 Ω^-1 ㎝^1) than NiO (0.1 Ω^-1 ㎝^-1) at 650℃. The solubilities of LiCoO2 electrode in electrolyte were varies 0.6 to 1.0 ppm during 200 hours. So, the solubilities of LiCoO2 were much lower than that of NiO.
        6 7 8 9