Most fishing nets used in fish cage aquaculture are made of synthetic fibers such as polyamide (PA) and polyethylene (PE). Therefore, it is challenging to maintain the internal volume of the fish cage due to biofouling, which can increase the load on the cage or reduce dissolved oxygen levels by impeding smooth current flow. To address this issue, research has been conducted to replace conventional synthetic fiber cage nets with brass nets, demonstrating certain benefits such as improved productivity and ease of fish cage management. However, given the need for a more thorough examination of brass fishing net weaving technology and performance, this study assessed the optimal weaving method for brass fishing nets to be used in fish cages. Additionally, it provided essential data for the practical application of brass fishing nets by evaluating their weight, tensile strength, elongation, fatigue resistance, and wear resistance. The study concluded that weaving brass fishing nets using the chain link method ensures durability, ease of installation, and compact storage in a scroll-like form. Moreover, due to their superior fatigue and wear resistance properties, brass nets can offer increased utility if appropriate net diameter and length are selected to compensate for their higher weight per unit area and relatively higher cost compared to existing fiber fishing nets.
The swimming behavior of pacific bluefin tuna (Thunnus orientalis) in the offshore sea cage of the brass fishing net was observed and analyzed by imaging sonar techniques. The cultured fish spent most of the time swimming a circular path along the circular cage wall and continued to swim only clockwise direction without completely changing the swimming direction during the 23-hour observation time. In addition, changed swimming behaviors were divided into four categories: (a) the behavior of a large group temporarily swimming in the opposite (counter clockwise) direction, (b) the behavior of a small group temporarily swimming in a small circular path, (c) the behavior swimming small circular path in the center of the cage, and (d) the behavior of a large group swimming across the center of the cage. The maximum swimming speed of the cultured fish was from 3.5 to 3.8 TL/s, the mode was from 1.2 to 1.4 TL/s and the swimming speed during the day time was faster than at night time. It was confirmed the cultured fish swam not only on the surface but also near the bottom net of the cage during the day, but swam mainly at the upper part of the cage at night.
본 연구에서는 해상가두리 양식장에서 북방전복과 둥근전복속 교잡종(왕전복♀*둥근전복♂)의 생물지표를 분석하여 교잡육종의 결과를 평가하고자 하였다. 생존율은 북방전복과 유사하였 으나, 성장(각장)은 교잡종에서 약 10% 빠른 것으로 분석되었다. 패각의 호흡공 기형율은 교잡 종이 북방전복보다 약 6% 낮았으며, 패각 함몰 및 부식율은 교잡종이 약 15% 낮았다. 생화학 적 조성에서는 조단백질의 경우 교잡종에서 약 3.1% 높았으며, 이를 제외한 나머지에서 유사 한 값을 나타냈다. 소화, 흡수 및 해독기능을 수행하는 간췌장의 조직학적 평가에서는 교잡종 에서 좋은 결과를 보였다. 이러한 결과로 보아 둥근전복속 교잡종은 추후 양식 환경에 접목 하였을 때 높은 양식 생산력을 가질 것으로 판단된다.
본 연구에서는 어장환경평가가 수행된 어류가두리 양식장의 조사 결과 중 일부를 대상으로 저서동물지수(Benthic Health Index, BHI)를 이용하여 양식장의 건강도를 평가하였으며, 평가 결과로 산출된 각 등급의 양식장 환경 특성을 파악하였다. 평가대상 어류가두리 양식장은 동해, 서해, 남해에 위치한 43개 양식장으로, BHI 1등급은 8개 양식장, 2등급은 4개 양식장, 3등급은 12개 양식장, 4등급은 19개 양식장이 포함되었다. 1등급 어류가두리양식장은 사질 퇴적상, 양식강도가 낮은 양식장이 포함되었으며, 2등급 어류가두리양식장은 해수 유통이 원활한 해역에 위치한 양식장이 속하였다. 3, 4등급이 속한 어류가두리양식장은 높은 강도로 양식 활동이 진행되고 있는 대다수의 양식장이 포함되었다. 3등급과 4등급의 양식장은 총유기탄소는 큰 차이가 없었으나, 다모류 군집분석의 결과는 4등급의 양식장에서의 유 기물 농축이 더 높은 것으로 나타났다.
We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter (OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to - 20.4‰ for δ13CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: - 21.6‰ to - 21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns (p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources (e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.
This study is aimed to figure out the productivity and variability of cage-aquaculture changes. According to the analysis, the productivity of major fish species has been increasing, except mullet. Although the regional productivity has decreased in the last two years, it has been on the rise considering as a whole. Gyeongsangnam-do showed the highest level of productivity by region. Productivity by species was also higher than other regions in the cases of rock fish, mullet and sea bream followed by productivity of Chungcheongnam-do. The production of marine cage-culture in Jeollanam-do is the second largest in Korea in value/weight while its productivity is lower than that of Chungcheongnam-do. When it comes to comparison by region, Gyeongsangnam-do shows the lowest productivity variation. And Jeollanam-do shows the second-lowest variation in productivity that is only about half of that of Chungcheongnam-do province. Thus, it is found that Jeollanam-do region has an advantage in management stability while its productivity is low. On the other hand, productivity by species was also analyzed. Gyeongsangnam-do has the highest productivity by species for rock fish, mullet and sea bream whereas rock bream productivity is the highest in Jeollanam-do. Therefore, it probably needs to reflect these results when choosing regional-focused incubation fish species.
This study is aimed to analyze the economic feasibility of yellowtail culture using the copper alloy net cage in Gyeongsangbuk-do. First of all, in order to evaluate the copper alloy net cage on yellowtail culture, I review the trend on the yellowtail culture industry and research the concept of copper alloy net cage. The copper-alloy net cage is now recognized as an advantages of its system stability, recycling, antibiosis and food safety. The results were summarized as follows: first, there was significant meaning of the profit model of yellowtail culture by the price difference. Second, I analyzed in the economic feasibility of yellowtail culture using the copper alloy net cage, internal rate of return (IRR) was 51.58%, a benefit-cost ratio was shown to be 2.27 and net present value (NPV) was 1,087,337 thousand won, which indicates the economic feasibility of yellowtail culture using the copper alloy net cage is profitable. Finally, in order to improve the economic valuation, it is necessary to focus more on the developing of technology and cost reduction strategy on the copper alloy net cage.
Mass mortality of mariculture fish due to high summer temperatures is a major issue in the mariculture industry in many coastal waters of Korea, yet measures to mitigate the impact are generally limited. We injected a micro-bubble of liquefied oxygen into the bottom of rockfish cages (about 6-8 m deep) in order to maximize the dispersal of micro-bubbled seawater and reduce fish mortality. The injection of low-temperature oxygen in micro-bubbles lowered the water temperature at the injection area by as much as 1℃ and increased dissolved oxygen concentration by 0.5 ppm. In early August, following a week with persistent high water temperature (above 28.5℃), there was an increase in fish mortality despite the micro-bubble system, which resulted in approximately 7% death of the total introduced fish population. However, this mortality appeared to be much lower than mortality reported in a neighboring mariculture facility (approximately 50% mortality). We also estimated the volume that can be recirculated with pumped seawater using a micro-bubble system. We suggest that this approach of injecting liquefied oxygen through a micro-bubble system may reduce fish mortality during high temperature periods.
In fisheries, the importance of designing efficient fish cages is being emphasized as aquaculture has become more production than capture fishing. Particularly, the gravity cage system is one of the popular fish cage system in Korea. Currently, gravity cages of various shapes and sizes are being widely designed and installed in offshore and inland seas. The cage is subject to external forces, such as currents and waves, and the shape of the structure and tension on the ropes changes according to these external forces. Thus, it is important to accurately calculate these dynamic behavior, including the external forces and tension on the structure during the design stage. In this study, three types of cage systems with an equal internal volume of 8000 m3 were analyzed using mass-spring models and their behavior was interpreted through simulations. These simulations were used to analyze the behavior and tension of the ropes in response to currents and waves to aid in the selection of individual cage sizes for a given total volume. The numerical calculation results indicate that depending on the flow rate, the most resistant system is System 1, which has eight strays, and System 2 and System 3 have 69.4% and 54.8% of the resistance of System 1. Further, total resistance increased as the number of cages increased for all flow rates.
Mobile fish-cage was developed assuming a cage net with an enclosed area, which and estimated the hydrodynamic characteristics of the cage through the model experiment. Flux-shielding plates, installed in the bow were compared with the resistance test carried out by making a hole, bilge keel and stud, and basic block flow rate consisting of the results to a flat surface plate.
The experimental results confirmed the improved resistance performance effect of 3~6% in the bilge keel and the stud form. To assess the stability of the fish-cage, evaluation of the stability in accordance with the stability criteria for determining the floating docks had confirmed that it satisfied the static stability performance under operating conditions at sea.
This study is aimed to analyze the hydrodynamic characteristics of the cage net in the circulating water channel. It visualized wake flows using a PIV (paricle imaging velocimetry) and analyzed the flow velocity distribution. In addition, the vorticity and turbulence intensity were analyzed from the wake flow distribution and compared changes by flow velocity. Results showed that the average turbulence intensity in the circulating water channel was very stable showing less than 1% in the range between 0.2 and 0.8 m/s. The drag coefficient affecting to the netting was estimated to be 1.35. The flow decreasing rate of the wake in the middle of the netting was 2.1% at the range of 0.2 m/s and it was constant at 6.6―6.9% over the range of 0.4 m/s irrespective of velocity increases. Finally, the change of turbulence intensity by netting and knot mesh could be confirmed. These results can be utilized as a basic information for the future research of flow characteristics by fishing nets and meshes.
This study is aimed to analyze the economic performance of black rockfish aquaculture by standardizing cost structures by region and farming size. The result of survey on farming and sale condition in each region, stocking density, survival rate, juvenile price, and unit production was the highest at Yeosu and Tongyeong, Heuksando showed the lowest. While rearing period was the longest at Tongyeong, the shortest region was Yeosu and Wando. In farming cost structure by region, amount of feeing was the highest at Tongyeong and Yeosu, and the lowest was Heuksando. Cost of medicine was high in Wando and Taean region, Yeosu and Hecksando was low. In case of farm size, feed cost ratio was high in the order of medium(0.75ha), small(0.25ha) and large(1.25ha) size. Standard production cost at every farm size of Heuksando showed the lowest among these regions. Taean and Yeosu was middle, and Tongyeong and Wando was the highest. According to the income, profit rate and investment return of farm size in all regions, as the bigger farm size, the higher income and profit rate was revealed. However, in case of Wando, Taean, and Heuksando which regions has high investment return, medium farm size was higher than large size. The result of economic analysis according to various factors, economic feasibility of black rockfish aquaculture in marine floating cage was showed significant changes by rearing and market condition.
The sea cage in marine aquaculture might be varied such as on the stability and shape in the open sea by environmental factors. To evaluate the stability of net cage structures in the open sea, the physical and numerical modeling techniques were applied and compared with field observations. This study was carried out to analyse the stability and the volume loss which would have an effect on the fish swimming behavior in the octagonal pillar type fish cage under the open sea. As a results, the volume loss ratio of the fish cage as measured using a depth sensor was indicated a value of the 30.3% under the current velocity (1.1m/s). The fish cage should be consisted of a concrete block with a weight over 10 tons, a mooring rope diameter over 28mm PP, and a shackle of 25mm under the current speed of 1m/sec for reasonable stability.
Nowadays, consumption of fisheries products is increasing. There are several factors, one of which is a quantitative development through aquaculture. Another factor is an increase qualitative consumption of fish which require that fish be supplied alive. This requires a lot of technical effort to transport the live fish that have low survival rate (c.f. tuna and mackerel) in coastal waters and in the open sea. To develop a towing cage for transporting the live fish, model test in a circulate water channel and simulation by computer tool were carried out. In order to spread vertically, floats were attached at the upper part of the cage, and iron chains attached at the lower part of the cage. For horizontal spreading, kites were attached on the cage. The tension and spreading performance of the cage were measured. The result shows that the tension and reduction ratio of inside volume of the cage were tended to increase with increased towing speeds. The suitable operation condition in towing cage was 1.0 m/s towing speeds with vertical spreading force 8.7 kN, horizontal spreading force 5.6 kN; in this case the reduction ratio of inside volume of the cage was estimated as 25%.