PURPOSES : The effect of yellow carpet visibility enhancement was verified and its impact on traffic safety for effective introduction of traffic safety facilities was studied. METHODS : There is currently no scientific evidence demonstrating that yellow carpets improve pedestrian awareness. In this study, the effect of increasing visibility caused by the installation of yellow carpet was verified, and the effect of improving the level of traffic safety was examined through an objective analysis. A drone was used to collect and analyze video data to compare the driving speeds of vehicles passing near yellow carpets at six different sites and diagnose the effects of speed reduction. RESULTS : The results showed that the visibility improvement values before and after the installation of the yellow carpet differed from place to place, but a visibility improvement effect existed in certain cases. In terms of the adequacy of the installation site, the yellow carpet had no deceleration effect on vehicles driving on signalized local streets and collector highways. It was found that there was a speed reduction effect on unsignalized local streets. CONCLUSIONS : To enhance traffic safety promotion, yellow carpets should be placed on unsignalized local streets. It is important to place the yellow carpet in the right place in a proper manner.
With the recent development of autonomous driving technology, many researchers have studied autonomous mobile robots. Accordingly, they are developing diverse mobile robot actuators. However, most actuators mainly use reducers made of chains, belts, multi-stage gears, etc. So the volume and size of the actuators increase, and power transmission efficiency tends to be relatively low. Therefore, this study has proposed the reducer of the mobile robot actuator using a complex planetary gear train with small volume and high power transmission efficiency, and has confirmed the stability of the proposed reducer through finite element analysis.
In case of worm reducer, the worm and worm wheel are the significant design elements. Most of the worm and worm wheel are being importer and assembled because that the localization is inadequate. As the demand increases and the necessity of localization and precision grows, to develop them is now more important things.
In this study, we conducted the design, manufactured prototype and performance evaluation for worm reducer for dual lead 5.2:1 servo motor. The worm reducer is analyzed design reliability by finite element method. The performance evaluation for manufactured prototype worm reducer was conducted on the backlash, operation temperature and contact efficiency with/without load and satisfied for the all test items.
To overcome recent emission regulation, various hybrid systems are being developed. In the E-4WD(electric four wheel drive) system, the engine and transmission drive the front wheel, electric motor and single reduction gear drive the rear wheel. As the gear ratio of the reduction gear set determines the electric motor's operating point, the gear ratio is important to enhancement efficiency of hybrid system. This study is to analyze motor reduction gear ratio's influence on E-4WD hybrid system for optimized efficiency and driving performance. Fuel economy, operating point of power source and hybrid mode are analyzed using simulation developed with dynamic programming method.
During the field operation of the Korean MBT(Main Battle Tank), the multi-smoke projectile launching system failed to function. As a result of conducting analysis, it was confirm that the gear shaft of reducer was failed. Therefore, a study on improvement in impact resistance of the reducer was conducted. The reducer was improved impact resistance by changing the design and material of gear shaft. The reliability of modified reducer was investigated by finite element analysis, performance and environmental tests. As a result of analysis, a strength of the modified gear shaft was improved by about 20 times than before improvement. The results of performance and environmental test show that the modified reducer is applicable for Korean MBT under the severe conditions. The quality improvement of multi-smoke projectile launching system contributes to survivability of Korean MBT.
The mobility of the tactical vehicle is important for a mission completion and survivability. During the field operation of the MLRS(Multiple Launcher Rocket System), broken bolt was found in a final reduction gear with oil leakage. It was confirmed that the final reduction gear pad bolt was broken with ductile fracture after inspecting and scanning electronic microscope of the bolt. Furthermore, a finite element analysis on the bolt was conducted with regards to the operating conditions in the final reduction gear. Conducting the analysis, there was a possibility of the bolt being damaged when we put rusty spline and the adhesion of hub thrust pad as input parameters. Finally, improvements on the spline in the shaft are expected in the future by utilizing the result of this study.
There are many risks in using grass cutter because of the pebble in grass and high speed rpm when the cutter hits the hard objects in grass. In this study, the existing patents are surveyed and classified for the new mechanism about the bottom safety cover. The new mechanism was modelled and the planetary gear are designed. The power source (engine or motor) will rotate the sun gear and the carrier of planetary gear is fixed into handle frame. The ring gear will drive the final cutter. The carrier fixed the bottom safety cover through the planetary gear hole at the handle bar. In this paper, we develop a new mechanism and analyze the idea for safe grass cutter and investigate the possibility of having patent through patent search.
PURPOSES : Since expressways in South Korea are toll roads, many trumpet type interchanges exist, resulting in the installation of loop ramps very frequently. While the travel speed of the main lane is designed to be 100-110 km/h, the structure of a loop ramp is different and is designed for a minimum speed of 40 km/h. In fact, most of the actual travel speeds measured on the ramp exceed the designated speed, which has been a major problem in traffic safety. In this research, a type of pavement marking speed-reduction treatment called the "Peripheral Transverse Line" is installed on expressway loop ramps in order to study the change of driving speeds after the installation. METHODS : To verify statistically the change, this speed-reduction treatment has been installed on the Chungju interchange and the Yeoju junction. The driving speeds before the installation were compared with driving speeds both one month and five monthsafter the installation. RESULTS : As a result, the reductions of the average driving speeds after the treatment were statistically significant. More specifically, the average driving speeds of the Chungju interchange were reduced by 7.1-7.7 % for its tangent road section, and the speeds decreased by 8.5-9.5 % for its curve section. Similarly, in the Yeoju junction, an average speed reduction of 2.9-4.8 % for its tangent section was measured, along with 3.9% long-term speed reduction for its curve section. CONCLUSIONS : Since the pavement marking speed-reduction treatment has been partially proven to be effective from this research, we expect to expand this treatment and re-confirm the effect from a long-term perspective in the future.
본 연구는 시뮬레이터를 이용하여 속도감속 노면표시 유형별로 감속 효과가 어느 정도인지에 대한 연구를 수행하였다. 이를 위해서 20~70대의 다양한 연령층으로 구성한 41명이 실험에 참여하였다. 구간별 기법에 따른 속도현황을 살펴보면, 노면표시 시작지점 및 곡선시작점에서 Peripheral Transverse Line II의 속도 감속효과가 가장 좋은 것으로 나타났다. 본 연구는 도로이용자의 인간공학적 고려 요소를 바탕으로 운전자 시각특성을 고려한 감속유도기법 개발에 있어서 그 효과를 검증했다는 점에서 의의가 있다. 향후 연구로는 감속유도 노면표시가 장기적으로 운전자에게 효과적인지에 대한 검증이 필요하며, 색의 대비(예 : 흰색 노면표시에 검은색 아스팔트)에 따른 속도감속 효과가 있는지에 대한 연구도 필요하다.
현행 고속도로 연결로 중 감속차로의 길이는 자유교통류 상태에서 유출차량이 본선과 유출부 사이의 속도의 차이에 적응할 수 있는 제동거리로써 결정된다. 그러나 실제 도로의 운영상태에서는 항상 자유교통류 상태를 유지할 수 없으며 때로는 유출부에서 대기행렬이 형성되게 된다. 대기행렬은 그 이후 접근하는 유출차량이 감속차로 이전에서부터 감속을 해야 하는 상황을 발생시켜 본선 교통류에 영향을 주게 될 뿐만 아니라, 일부 입체교차로에서는 감속차로의 길이보다 더 길게 대기행렬이 형성됨으로 인하여 본선 최하위 차로까지 점유하게 되어 소통 및 안전에 큰 지장을 초래하고 있다. 본 연구에서는 이러한 문제를 해결할 수 있는 대안을 개발할 수 있는 방법론을 개발하기 위하여 충격파 이론을 적용하여 본선 및 유출부의 교통량, 설계속도 등에 따른 유출부 감속차로에서의 대기행렬 길이를 산정하여 현행 감속차로의 길이와 비교하였다. 그리고 대기행렬이 본선 교통류에 대한 영향을 최소화할 수 있도록 감속차로의 수에 따른 대기행렬길이의 변화도 분석하였다. 결과에 의하면 유출램프의 설계속도를 10km/h 상향시킴으로써 대기행렬의 길이는 10% 감소되며, 램프의 차로수를 1개에서 2개로 증가시키게 되면 50%의 대기행렬 감소를 기대할 수 있는 것으로 분석되었다.
고속도로 및 국도 등의 인터체인지 유출부에 대한 설계기준과 연구 내용은 주로 변이구간, 감속차로, 곡선반경, 유출각 및 노즈부의 형상 등 자동차와 도로 기하구조간의 운동역학적인 관점의 안전성 확보만 주요 관심사였다. 따라서 본 연구에서는 차량 주행속도 특성에 초점을 맞추어 첫째 현행 설계기준의 이론적 의미를 해석하고, 둘째, 유출부 완화곡선에서 차량의 주행속도 및 교통사고 특성을 살펴보았고, 셋째, 기존의 인터체인지 유출 램프부 최소곡선반경의 부적합성을 검토한 후 운전자의 완화 곡선부 주행특성에 맞는 새로운 완화곡선 설계방법을 제시하였고 그 결과를 산출하여 기존방법과 비교 검토한 결과 유출램프 완화 곡선부 설계속도 50km/h, 40km/h의 경우기존의 원심력과 구심력이 평형을 이루는 최소곡선반경에서 관성력이 커져 교통사고의 위험이 높아진다는 것을 확인할 수 있었고 새로이 제안한 감속주행 완화곡선에서는 기존의 완화곡선보다 관성력이 작아지고 곡선은 커져 기존보다 안전한 곡선으로 확인되었다.
There are many types of reduction drives for industrial uses. However, it is essential to use precision reduction drives for accuracy of position controls on robot systems. Among the precision reduction drives, the cycloid reduction drive is well known for its high performances and widely used in precision industrial field. Cycloid reduction drives are mainly used in manipulators in robot system requiring a characteristic of a high precision control. When we design this cycloid reduction drive, there are many factors that must be considered. First, a geometrical analysis of a tooth shape must be drawn from the basic concept. Secondly, load distribution, stress distribution and sliding velocity on a tooth should be calculated exactly. Finally, a computer software to optimize the design of a cycloid tooth needs developing. In this study, many different kinds of factors concerning the characteristic of a cycloid tooth were researched on the basis of the analysis of load, stress and sliding velocity on a tooth. The computer expert system to design the cycloid reduction drive was developed using a Visual C++ compiler. In conclusion, the most important factors can be obtained easily as the user put the simple input data.
The agitator with a reducer are usually using on the process of a water treatment. However, working the reducer at the field, a lubricant oil can leak out. It causes an environment pollution and a water service/sewerage pollution problem. In this study, the reducer with a drywell structure is developed in order to prevent the oil leakage. The drywell structure is that the reducer bottom housing and the support column of an output shaft are united, and taper roller bearings are in the bottom housing. During the development of the reducer, a mockup and a prototype are made by using CAD and a high speed CNC machine. Then, to prove the performance of the prototype, the performance tests, unload working test and the mechanical torque efficiency test, are conducted by the torque meter device. Also a motor velocity(rpm) control system is developed by a PID control according to the working loads(MLSS data). The results of the test are shown that the maximum torque efficiency is 88.45%, the oil leakage and the abnormal noise do not occur during the work. Therefore the reducer with the drywell structure and the motor rpm PID control system is successfully developed.