본 연구는 연안해양 수치모델에 활용되는 LDAPS 강우예보 자료의 시공간적 오차와 한계점을 분석하고 자료의 신뢰성을 검증 하였다. LDAPS 강우자료의 검증은 진해만 주변 우량계 3개소를 기준으로 2020년의 강우를 비교하였으며 우량계와 LDAPS의 비교 결과, LDAPS 강우자료는 장기적인 강우의 경향은 대체로 잘 재현하였으나 단기적으로는 큰 차이를 보였다. 정량적인 강우량 오차는 연간 197.5mm였으며, 특히 하계는 285.4mm로 나타나 계절적으로 강우변동이 큰 시기일수록 누적 강우량의 차이가 증가하였다. 강우 발생 시점 의 경우 약 8시간의 시간 지연을 나타내어 LDPAS 강우자료의 시간적 오차가 연안해양환경 예측 시 정확도를 크게 감소시킬 수 있는 것 으로 나타났다. 연안의 강우를 정확히 반영하지 못하는 LDAPS 강우자료를 무분별하게 사용할 경우 연안역에서 오염물질 확산 또는 극한 강우로 인한 연안환경 변화 예측에 심각한 문제를 발생시킬 수 있으며 LDAPS 강우자료의 적절한 활용을 위해서는 검증과 추가적인 개선 을 통한 정확도 향상이 필요하다.
PURPOSES : This study presents an application plan for parking spaces for shared e-scooters using the clearance widths of sidewalks. The detailed purposes are as follows: firstly, to present appropriate spaces for installing parking lots for shared E-scooters. Secondly, to derive the specifications of parking unit spaces for shared E-scooters. Thirdly, to derive the formula for calculating the parking angle of shared E-scooters. Lastly, to provide examples of calculating the parking angle using the derived formula. METHODS : Based on the literature review, appropriate locations for installing parking spaces for shared E-scooters on sidewalks were proposed. We also investigated design factors based on a literature review to derive the specifications of parking unit spaces for shared E-scooters, and utilized the geometric characteristics of clearance widths of sidewalks to derive a formula for calculating the parking angle. Finally, we provide examples of calculating the parking angle for shared E-scooters using the derived formula. RESULTS : The results of this study are as follows. We proposed clearance widths of sidewalks as appropriate spaces for installing parking spaces for shared E-scooters. Next, we derived the specifications of parking unit spaces for shared E-scooters considering anthropometric measurements, specifications of shared E-scooters, and clearance dimensions. Moreover, we derived a formula for calculating the parking angle of shared E-scooters considering clearance widths of sidewalks. Finally, we presented examples of calculating the parking angle for shared E-scooter parking unit spaces based on clearance widths of sidewalks. CONCLUSIONS : It was concluded that the application for parking spaces for shared e-scooters using the clearance widths of sidewalks was presented. We derived the standard and compact specifications of parking unit spaces for shared E-scooters, and provided foundational data for estimating the parking capacity using a formula for calculating the parking angle of shared E-scooters. Future research directions include presenting case studies of estimating parking capacity using the parking angle of shared E-scooters.
This study examined the spatial morphological patterns of forest habitats and the characteristics of roadkill occurrences in the forests of Mungyeong, Yecheon, Yeongju, Andong, and Bonghwa in Gyeongsangbuk-do. It involved building a resistance map between habitats and analyzing connectivity based on the least-cost distance. The analysis of the distance between the forest habitat Cores derived from MSPA and roadkill points showed that roadkill occurrences were concentrated approximately 74.11 m away from the Cores, with most roadkills happening within 360 m from the habitats. The connectivity analysis between core habitats larger than 1 km2 revealed 141 core habitats and 242 least-cost paths between them. The corridor distance value was found to be highest in Mungyeong city, indicating an urgent need for strategies to enhance habitat connectivity there. This research is expected to serve as foundational data for developing strategies to enhance ecosystem connectivity and restore habitats, by analyzing ecosystem connectivity and roadkill issues due to habitat fragmentation.
본 연구는 방사형 K-공간 획득 기법 중 하나인 JET 기법을 적용하여 어깨관절 자기공명영상 검사에서의 움직임 인공물과 노이즈를 감소 효과를 평가하였다. 2023년 2월 1일부터 3월 31일까지 어깨관절 자기공명영상 검사를 받 은 35명을 대상으로 선정하여 후향적으로 분석하였다. 평가는 JET 기법 적용 여부에 따라 신호 대 노이즈 비, 평균 대 표준편차 비, 움직임 인공물 발생 여부에 대한 영상 평가를 수행하였다. JET 기법을 적용한 그룹에서는 신호 대 노이즈 비, 평균 대 표준편차 비, 움직임 인공물 발생 여부에 대한 영상 평가 값이 통계적으로 유의하게 높게 나타났다(p<0.05). 본 연구를 통해 어깨관절 자기공명영상 검사 시 JET 기법의 도입은 움직임 인공물의 감소뿐만 아니라 신호 대 노이즈 비와 평균 대 표준편차 비가 향상된 영상을 얻을 수 있음을 확인하였다. 이러한 결과는 JET 기법이 어깨관절 영상 취득에 유용하게 활용될 수 있을 것으로 판단되며, 더 나아가 다양한 부위에 적용되는데 있어 서도 기여할 수 있을것으로 예상된다.
Although many attempts have been made to solve the atmospheric diffusion equation, there are many limits that prevent both solving it and its application. The causes of these impediments are primarily due to both the partial differentiation term and the turbulence diffusion coefficient. In consideration of this dilemma, this study aims to discuss the methodology and cases of utilizing a passive air sampler to increase the applicability of atmospheric dispersion modeling. Passive air samplers do not require pumps or electric power, allowing us to achieve a high resolution of spatial distribution data at a low cost and with minimal effort. They are also used to validate and calibrate the results of dispersion modeling. Currently, passive air samplers are able to measure air pollutants, including SO2, NO2, O3, dust, asbestos, heavy metals, indoor HCHO, and CO2. Additionally, they can measure odorous substances such as NH3, H2S, and VOCs. In this paper, many cases for application were introduced for several purposes, such as classifying the VOCs’ emission characteristics, surveying spatial distribution, identifying sources of airborne or odorous pollutants, and so on. In conclusion, the validation and calibration cases for modeling results were discussed, which will be very beneficial for increasing the accuracy and reliability of modeling results.
This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m x 5 m x 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.