Fueled by international efforts towards AI standardization, including those by the European Commission, the United States, and international organizations, this study introduces a AI-driven framework for analyzing advancements in drone technology. Utilizing project data retrieved from the NTIS DB via the “drone” keyword, the framework employs a diverse toolkit of supervised learning methods (Keras MLP, XGboost, LightGBM, and CatBoost) enhanced by BERTopic (natural language analysis tool). This multifaceted approach ensures both comprehensive data quality evaluation and in-depth structural analysis of documents. Furthermore, a 6T-based classification method refines non-applicable data for year-on-year AI analysis, demonstrably improving accuracy as measured by accuracy metric. Utilizing AI’s power, including GPT-4, this research unveils year-on-year trends in emerging keywords and employs them to generate detailed summaries, enabling efficient processing of large text datasets and offering an AI analysis system applicable to policy domains. Notably, this study not only advances methodologies aligned with AI Act standards but also lays the groundwork for responsible AI implementation through analysis of government research and development investments.
The purpose of this paper is to understand the key factors for efficient maintenance of rapidly aging facilities. Therefore, the safety inspection/diagnosis reports accumulated in the unstructured data were collected and preprocessed. Then, the analysis was performed using a text mining analysis method. The derived vulnerabilities of tunnel facilities can be used as elements of inspections that take into account the characteristics of individual facilities during regular inspections and daily inspections in the short term. In addition, if detailed specification information and other inspection results(safety, durability, and ease of use) are used for analysis, it provides a stepping stone for supporting preemptive maintenance decision-making in the long term.
PURPOSES : The purpose of this study is to contribute to the utilization of standards while considering the possible upgrade of a local system as a subject of the application. Therefore, this study aims to explore the possible application of LandInfra for a local road management (maintenance) system in the context of enabling the basis of 3D geospatial road information management in Korea.
METHODS : Based on a review of related literature and international standards, an analysis of the current system is performed. After reviewing the LandInfra standard, an examination of corresponding classes between each data model (HMS and LandInfra) is performed for the mapping process. After the mapping process, a data model of the LandInfra-based HMS pavement data model is proposed.
RESULTS : To apply the LandInfa to the HMS pavement part, an examination of each data model is performed. After this procedure, a LandInfra-based HMS pavement database schema is proposed in the context of enabling 3D geospatial road information management and maintenance, particularly for pavement management information.
CONCLUSIONS : This paper presents how the LandInfra international open geospatial standard can be applied to the local road management system (HMS pavement part). As a result of this study, the LandInfra standard could be applied to the HMS; however, an encoding of the standard is required for conformance. Thus, further studies would be the encoding of the proposed data model for conformance with InfaGML encoding standards. In addition, a system prototype may be needed for complete application.
Building Information Modeling(BIM)기술을 유지관리 단계에서 활용하기 위해서는 상당량의 유지관리 데이터와 BIM기반 정보모델 객체들이 연계되어 운용되어야 한다. 본 연구에서는 교량 점검데이터를 표현하기 위해 확장된 IFC기반의 BIM모델과 온톨로지를 연계하여 정보를 관리하는 방법을 제시하였다. 이를 위해 현재의 IFC버전은 교량 객체를 제대로 표현할 수 없기 때문에 교량을 위한 IFC엔티티를 확장하였으며, 확장된 IFC기반의 정보모델을 생성하는 방법을 제시하였다. 또한, 교량 점검데이터에 대한 기본 개념을 추출하고, 교량 점검데이터를 위한 온톨로지(Ontology)를 생성하였다. 추출된 기본 개념들은 제시된 온톨로지에서 시멘틱 웹의 트리 플(Triple) 방식으로 관계를 형성되었다. 마지막으로, 생성된 IFC기반의 BIM모델은 제시된 온톨로지와의 통합을 위하여 시멘틱 데이터 형식으로 변환되었다. 확장된 IFC기반 BIM모델은 제시된 교량 점검데이터 관리를 위한 온톨로지와 통합되었고, 실제 교량 점검데 이터를 기반으로 테스트모델을 생성하였다. SPARQL query를 통해 목적에 맞는 교량 점검데이터가 추출됨을 확인하여 실효성을 검 증하였다.
본 연구에서는 태백산국립공원 주요 탐방로 입구에 설치된 탐방객 자동 계수기 데이터를 이용하여 탐방로별 일간 탐방객수에 영향을 미치는 요인을 분석하고, 이를 바탕으로 탐방로를 유형화하였다. 일일 탐방객수를 종속변수로 다중회귀분석 실시한 결과, 개천절이나 눈축제 등 행사는 모든 탐방로의 탐방객수에 영향을 미쳐, 태백산국립공원의 일일 탐방객수를 결정하는 가장 큰 요인인 것으로 분석되었다. 3일 이상 휴일이 연속되는 연휴와 일반 공휴일도 대부분의 탐방로의 일일 탐방객수에 영향을 미쳤다. 강수량은 비산행 목적의 탐방객이 많은 탐방로의 탐방객수에는 부(-)의 영향을 미쳤으나, 산행 목적의 탐방객이 많은 탐방로의 탐방객수에는 유의미한 영향을 미치지 않아, 산행 목적 탐방객들은 날씨가 궂더라도 산행을 강행하는 것으로 나타났다. 기온은 산행 목적의 탐방객이 많은 탐방로의 탐방객수에는 정(+)의 영향을 미쳤으나, 눈축제가 열리는 당골광장 인근의 탐방로의 탐방객수에는 부(-)의 영향을 미쳐, 눈축제의 영향권인지 여부가 탐방로 관리에 결정적 요인이었다. K-mean clustering을 이용하여 18개 탐방로를 유형 분류한 결과, 태백산국립공원의 탐방로는 눈축제에 영향을 받는 유형(유형 1)과, 가까운 거리에 볼거리가 많아 비산행 탐방객이 많은 유형(유형 2), 그리고 산행을 목적으로 온 탐방객들이 대부분인 유형(유형 3)의 3개 유형을 분류할 수 있었다. 탐방로 유형별 탐방객 행태와 불법 행위 유형이 다르므로, 유형별 특성에 맞춰 탐방로 관리방안을 마련하여야 할 것이다.
국내에는 독자적으로 연구가 수행되어 개인적으로 보관 중인 지질 연구 자료가 다량 존재하는데, 이 자료에 대한 접근성이 떨어지기 때문에 다른 연구자들과의 공유가 용이하지 않다. 이런 자료에 대한 메타데이터를 체계적으로 구축하고 총괄적으로 관리하여 이 자료를 필요로 하는 연구자들이 효과적으로 연구를 수행할 수 있는 기회를 제공하는 것이 이 연구의 목적이다. 국내에서 연구된 약 1000여개의 지질 시료(900여개의 암석과 화석 시료, 100여개의 박편 시 료)를 수집하였고, 각 시료의 고화질 사진, 분류, 시료명, 보유기관, 산지, 좌표, 특징 등에 대한 메타데이터를 구축하였다. 암석과 화석 시료 100개에 대해 추가적으로 3D 모델링을 수행하였다. 이 연구를 통해 유실되거나 방치되는 중요한 지질 자료에 대한 연구자들의 접근성이 높아지고 자료의 공유가 가능해진다. 따라서 연구자들은 반복적인 연구 자료 수 집 작업으로 인한 시간과 비용의 낭비를 줄일 수 있고, 효율적인 연구를 수행하여 경쟁력을 갖춘 연구 결과를 획득할 수 있다. 또한 이미 확보된 시료에 대한 무분별한 반복 채집으로 인해 중요한, 그리고 피해에 취약한 자료가 훼손되는 것을 방지할 수 있다. 향후 전국의 대학과 연구기관에서 보관중인 다양한 암석과 박편 시료에 대한 메타데이터를 추가로 구축하면 자료의 식별 및 진전된 연구가 가능하고, 더불어 전문적인 광물학 및 암석학의 기초 지식에 대한 비교와 분석을 기대할 수 있다.
매년 해양활동이 증가하며 해양사고 발생빈도가 높아지고 있다. 이에 따라 해양안전을 위한 각종 연구 활동과 정책이 실행되고 있다. 하지만 이러한 노력에도 불구하고 매년 해양사고가 증가하고 있어 이들의 실효성에 대한 문제가 제기되고 있다. 문헌연구 결과에 따르면, 통계연보를 활용한 선행연구는 통계제공항목 간 비교를 통해 두드러지는 항목에 대한 예방책을 제시하고 있다. 2000년대 이후에는 대형 해양사고가 반복적으로 발생하면서 '사고대응'에 대한 사례연구(case study)가 진행되고 있다. 국내 해양안전을 위한 정책수립 연구과정에서 통계연보나 사고사례를 주 자료로 활용하고 있으나 현재 자료는 사후결과 요약정도의 수준이다. 따라서 본 연구에서는 해양 사고 사례분석 및 개선방안 관련 문헌연구를 통해 현행 해양관련 연구와 정책의 한계를 탐색하였다. 또한 자료 활용 한계를 개선하기 위한 방안의 일환으로 선박사고 상황보고서 속성분석, 텍스트 마이닝을 통해 해양사고 정보 분류체계인 온톨로지(ontology)를 수정 보완하였다. 해당 항목은 ‘신고자, 신고수단, 구조세력, 대응 조치사항, 대응취약성, 적재물, 유류유출경위, 피해유형, 사고처리결과’이며, 이 항목 들은 분류체계 표준용어를 활용해 향후 지속적으로 수집 활용할 수 있다. 마지막으로 온톨로지를 실질적으로 활용하기 위한 데이터 수집 및 품질확보 방안을 제시했다. 결과적으로 현재 해양안전이 직면한 문제를 명확히 파악하고 ‘품질이 확보된 충분한 정보’를 활용한다면 보다 다양한 연구와 실효성 있는 정책 실현이 가능할 것이다.