본 연구에서는 UAV(Unmanned Aerial Vehicle) 기반 LiDAR(Light Detection and Ranging), SfM(Structure from Motion), 그리고 수치지형도 기반 DEM(Digital Elevation Model) 데이터를 동일 지역에 적용하여 지형 데이터의 정밀도와 표현 특성을 정량적으로 비교 분석하였다. 경기도 시흥시 범배산 일대를 연구 대상지로 선정하고, 평지, 완사면, 급사면의 세 구역으로 나누어 고도 및 경사 통계, 경사 방향, 경사도 재분류에 따른 면적 분포를 비교하였다. 분석 결과, UAV LiDAR 기반 DEM은 모든 지형에서 가장 높은 정밀도와 해상도를 보여주었으며, SfM 기반 데이터는 비용과 접근성 면에서 유리하나 식생 및 지형 복잡도에 따라 정확도 변동이 크게 나타났다. 수치지형도 기반 DEM은 해상도는 낮지만 일정한 품질을 유지하며 일반적인 지형 분석에 적합한 것으로 나타났다. 본 연구는 지형 조건과 분석 목적에 따른 공간데이터 선택 기준을 제시하고, UAV 기반 지형 정보 활용 전략 수립에 기초자료로 활용될 수 있다.
본 연구는 개선된 무인도 지리정보를 구축하기 위해 폴리곤(Polygon) 기반 무인도 지도와 속성정보를 구축하였다. 연구 결과, 3,460개의 포인트(Point) 데이터와 3,447개의 폴리곤 기반 섬 데이터를 구축하였다. 여기에는 463개의 유인도가 포함되었으며, 무인도 수는 기존 해양수산부의 무인도서 정보조회 서비스에 비해 80개 추가된 것이다. 속성정보로는 59건 이상의 이명과 61개의 무인도 지형 변화 사례를 정리하였다. 무인도 지형 변화는 육화, 소멸, 연결, 병합의 네 가지로 구분하였다. 데이터 구축 과정에서는 해안선 자료의 통합, 불필요한 폴리곤 객체의 정리, 이명 정리 과정에서 일부 한계가 있었다. 이런 한계에도 불구하고 본 연구에서 구축된 데이터는 무인도의 공간적 변화 모니터링과 보전 정책 수립을 위한 기초 자료를 제공하고, 향후 다양한 연구에 활용될 수 있을 것으로 기대된다.
This study is a preliminary investigation into a method for updating analytical models using actual vibration measurement data to improve the reliability of the seismic performance evaluations. The research was conducted on 26 models with various parameters, aiming to develop an optimal analytical model that closely matches the natural frequencies of the actual building. By identifying the dynamic characteristics of the target building through vibration measurements taken just before the demolition of the structure, the natural frequency analysis results of the analytical models were compared to the measured data. Based on this comparison, an optimized method for adjusting the parameters of the analytical models was derived. Throughout the analysis, various parameters were adjusted, and the eigenvalue analysis results were corrected by comparing them with vibration measurements. Among the comparative analytical models, the model with the lowest error rate was selected. The results showed that, in all cases, the analytical model with a concrete compressive strength of 16 MPa (based on actual measurements), pin boundary conditions, and an idealized strip footing cross-section had the closest match to the actual building's natural frequencies, with an average error of less than 8%.
중앙버스전용차로는 일반 도로 대비 높은 교통량과 반복적인 축하중이 작용하는 구간으로, 정차 및 출발 과정에서 발생 하는 국부적인 응력 집중으로 인해 포장 파손이 빈번하게 발생한다. 그러나 기존 도로 설계에서는 정적인 교통량을 기준 으로 축하중을 산정하여, 실제 교통 환경에서의 버스 유형별 차이, 재차 인원, 시간대별 하중 변화 등 동적인 요소를 충 분히 반영하지 못하는 한계가 존재한다. 이에 본 연구에서는 대중교통 빅데이터를 활용하여 중앙버스전용차로의 버스 유 형 및 시간대별 재차 인원을 반영한 새로운 축하중 산정 모델을 개발하였다. 이를 위해 서울시 열린 데이터 광장의 교통 정보를 활용하여 버스 유형 및 시간대별 재차 인원 데이터를 수집하고, 카카오맵 및 네이버 로드뷰 데이터를 이용해 결 측치를 보완하여 데이터셋을 구축하였다. 구축된 데이터셋을 활용하여 기존 ESAL(Equivalent Single Axle Load) 방식과 비교 분석한 결과, 새로운 축하중 모델에서는 기존 방식 대비 평균 111.8% 높은 축하중이 산정되었으며, 일부 구간에서 는 최대 128.9%까지 차이가 발생하는 것으로 나타났다. 이는 기존 포장 설계가 중앙버스전용차로의 실질적인 교통 하중 을 충분히 반영하지 못하고 있음을 시사하며, 추가적으로 버스 중하중의 가·감속의 영향을 고려한다면, 시간대별·노선별 실시간 축하중 변화를 보다 정밀하게 분석할 수 있으며, 이를 통해 과소 산정된 설계 하중을 보완하고 포장 공용성을 향 상시킬 수 있는 최적의 설계 및 유지보수 전략 수립이 가능할 것으로 기대된다.
지하도로는 폐쇄적인 공간 구조와 내·외부 조도 차이로 인해 지상도로와 다른 교통 환경을 형성하며 이러한 특성은 교 통사고에 영향을 미칠 수 있다. 특히 고속도로 터널에서 사고 발생 시 대형 인명 피해로 이어질 가능성이 크다는 점을 고려할 때 지하도로에서도 유사한 우려가 제기된다. 따라서 지하도로의 교통류 특성을 면밀히 분석하여 안전성을 평가하 고 사고 예방을 위한 효과적인 대책을 마련하는 것이 중요하다. 본 연구에서는 서부간선 지하도로 성산 방면의 14개 VDS 검지기 데이터를 기반으로 지점별 속도 변동성과 교통사고 분석을 통해 안전성을 평가하였고 분석 결과의 시사점 을 바탕으로 지하도로 속도 관리 전략을 설계하였다. 먼저, VDS 검지기 지점별 속도 표준편차와 time-varying-volatility 산출 및 속도의 변동성과 교통사고 데이터 매칭을 통해 사고 개연성과 심각도를 분석하였다. 이후, 사후검정을 통해 속 도 및 속도 변동성 기준으로 동질적 부분집합을 도출하고 회귀분석을 통해 속도 변동성과 교통량·밀도 간의 관계를 규명 하여 속도 변동성을 최소화할 수 있는 최적의 교통량과 밀도를 산출하였다. 분석 결과, 속도 변동성이 큰 구간에서 사고 개연성과 심각도가 높게 나타났으며 지하도로에 구간단속을 적용할 경우 하류부에서 변동성이 증가하는 현상을 확인하 였다. 이를 바탕으로 위험 구간을 식별하고 해당 구간에 가변형 속도 제한 시스템을 적용한 로컬 속도 관리 전략을 제시 하였다. 본 연구의 결과는 지하도로의 사고 예방 및 안전성 향상을 위한 실질적인 속도 관리 전략 설계에 기여할 수 있 을 것으로 기대된다.
이 연구는 관측 지점의 해황 정보 데이터를 기반으로 관측 지점 이외 공간의 해황 정보 데이터를 격자 형식으로 공간 보간하는 방법에 관해 연구한다. 해황 정보를 얻을 수 있는 관측소나 관측 지점의 공간적 분포가 제한되어 있어 단편적인 지점의 해황 정보만을 수 집할 수 있기 때문에 이러한 점을 해결하기 위해 OPEN API를 활용하여 해황 정보 데이터를 수집하고, 데이터 전처리 과정을 통해 관측 데이터가 존재하지 않는 지점의 데이터를 격자 형식으로 공간 보간한다. 본 연구에서 사용된 보간 방법으로는 Cubic spline interpolation, Linear extrapolation, Kriging 3가지 방법을 사용하였고 각 보간 결과의 비교 분석을 통해 보간 결과의 정확도와 공간 보간에 활용 가능성을 평가하였다. 결과적으로 Kriging이 관측된 지점 간의 공간적 분포와 상관관계, 해황 정보의 데이터 구조를 가장 잘 반영하여 관측 지점 이 외 보간에 대한 결과가 다른 두 보간 방법에 비해 높은 정확도를 보여 해황 정보 공간 보간에 적합한 보간 방법으로 판단되었다. 공간 보 간된 데이터는 평균 풍속 및 풍향, 평균 조류 속도 및 방향 등 선박의 조종성에 영향을 미치는 요인을 정밀하게 계산하는 데 활용 가능하 며 선박 항해 경로를 따라 영향을 받는 외력을 파악, 이를 통해 안전성과 경제성을 모두 고려한 경로 탐색에 활용할 수 있을 것으로 기대 된다.
Structures compromised by a seismic event may be susceptible to aftershocks or subsequent occurrences within a particular duration. Considering that the shape ratios of sections, such as column shape ratio (CSR) and wall shape ratio (WSR), significantly influence the behavior of reinforced concrete (RC) piloti structures, it is essential to determine the best appropriate methodology for these structures. The seismic evaluation of piloti structures was conducted to measure seismic performance based on section shape ratios and inter-story drift ratio (IDR) standards. The diverse machine-learning models were trained and evaluated using the dataset, and the optimal model was chosen based on the performance of each model. The optimal model was employed to predict seismic performance by adjusting section shape ratios and output parameters, and a recommended approach for section shape ratios was presented. The optimal section shape ratios for the CSR range from 1.0 to 1.5, while the WSR spans from 1.5 to 3.33, regardless of the inter-story drift ratios.
본 연구는 유럽연합(European Union, EU)의 디지털 서비스법(Digital Services Act, DSA)과 브뤼셀 효과(Brussels effect)가 X(舊 Twitter) 플랫폼에 미친 영향을 데이터 분석을 통해 평가한다. DSA는 디지털 플 랫폼에 대한 규제 강화와 콘텐츠 관리의 투명성을 요구하며, X는 이를 통해 불법 콘텐츠와 혐오 발언에 대한 처리 방식을 개선하고 있다. 본 연구는 2023년부터 발행된 DSA의 투명성 보고서를 기반으로, 국가별 콘 텐츠 조정 효율성과 자동화 및 수동 검토 시스템의 성과를 분석한다. 이 를 위해, 데이터 수집 및 전처리를 거쳐 Python을 활용한 통계적 분석 을 적용하였다. 또한, 유럽 국가별로 발생한 집행 차이와 그로 인한 문제 점을 살펴보고, 글로벌 디지털 규제의 확산 가능성에 대한 정책적 시사 점을 제시한다.
본 연구의 목적은 2022 개정 교육과정 고등학교 신설 과목인 「도시의 미래 탐구」가 학교 현장에서 성공적으로 안착하고 지리교과의 심화과목이자 진로 선택 과목으로서의 정체성을 살리기 위한 방안으로 공공데이터를 활용한 웹 기반 GIS 플랫폼을 개발하고, 교수・학습 모듈을 디자인하는 것이다. 이 플랫폼은 데이터 전처리, 시각화, 공간 분석을 위한 통합 도구를 제공하며, HTML과 JavaScript로 설계되어 저사양 기기를 포함한 다양한 교육 환경에서도 활용 가능하다. 본 연구는 또한 「도시의 미래 탐구」교육과정에 부합하는 교수・학습 모듈을 개발하고, 지리탐구의 수업 실행 방식을 제안하였다. 학습자는 ‘도시’라고 하는 시민성의 공간을 과학적 인식, 개인적 반응, 비판적 사고를 통해 온전히 이해하게 되고, 도시의 역동성과 공간 불평등을 탐구할 수 있도록 설계되었다. 본 연구는 공공데이터와 지리정보기술을 통합한 본 연구는 지리교육에서 디지털 리터러시를 증진하고 비판적 탐구 역량을 강화한다는 점에서 의의가 있다.
본 연구는 정서가 어떻게 표상되고 그 구조가 어떠한지 파악하기 위한 목적으로 진행되었다. 이에 정서 영상에서 유발된 정서에 대해 웨어러블 기구 기반 EEG 반응이 어떻게 분류되고 표상되는지 알아보고자 하였다. 이를 위해 참가자간 분류분석으로 참가자들 간의 정서 반응의 일관성을 확인하였다. 또한 분류분석의 결과로 도출된 정서 영상 별 정확 및 오분류를 오차행렬을 통해 기술하였다. 다음으로, 핵심정서 모델을 기반으로 EEG 데이터에 다차원척도 법을 적용하여 정서가 정서가와 각성가 두 가지 차원에서 어떻게 표상되는지 확인하였다. 마지막으로, 표상 유사성 분석을 통해 행동 데이터, 생리 측정 데이터, EEG 데이터 중 정서 차원을 가장 잘 설명하는 데이터가 무엇인지 확인하였다. 참가자간 분류분석 결과, 정서유형이 유의미하게 분류되었고 이는 EEG 데이터에 정서에 따라 참가자들 간 공유되는 패턴이 있음을 시사한다. 다차원척도법 결과, 정서 자극에 따른 EEG 데이터가 각성가 차원에서 표상이 잘 이루어졌다. 표상 유사성 분석 결과, 정서가 차원은 행동 데이터가, 각성가 차원은 EEG 데이터와 생리 측정 데이 터가 잘 설명하였다. 본 연구는 웨어러블 기구를 통해 측정된 영상 자극에 따른 EEG 데이터를 사용해 기존의 정서 이론과 부합하는 결과를 얻은 것에 의의가 있다.
This study develops a machine learning-based tool life prediction model using spindle power data collected from real manufacturing environments. The primary objective is to monitor tool wear and predict optimal replacement times, thereby enhancing manufacturing efficiency and product quality in smart factory settings. Accurate tool life prediction is critical for reducing downtime, minimizing costs, and maintaining consistent product standards. Six machine learning models, including Random Forest, Decision Tree, Support Vector Regressor, Linear Regression, XGBoost, and LightGBM, were evaluated for their predictive performance. Among these, the Random Forest Regressor demonstrated the highest accuracy with R2 value of 0.92, making it the most suitable for tool wear prediction. Linear Regression also provided detailed insights into the relationship between tool usage and spindle power, offering a practical alternative for precise predictions in scenarios with consistent data patterns. The results highlight the potential for real-time monitoring and predictive maintenance, significantly reducing downtime, optimizing tool usage, and improving operational efficiency. Challenges such as data variability, real-world noise, and model generalizability across diverse processes remain areas for future exploration. This work contributes to advancing smart manufacturing by integrating data-driven approaches into operational workflows and enabling sustainable, cost-effective production environments.
The purpose of this study is to develop a timely fall detection system aimed at improving elderly care, reducing injury risks, and promoting greater independence among older adults. Falls are a leading cause of severe complications, long-term disabilities, and even mortality in the aging population, making their detection and prevention a crucial area of public health focus. This research introduces an innovative fall detection approach by leveraging Mediapipe, a state-of-the-art computer vision tool designed for human posture tracking. By analyzing the velocity of keypoints derived from human movement data, the system is able to detect abrupt changes in motion patterns, which are indicative of potential falls. To enhance the accuracy and robustness of fall detection, this system integrates an LSTM (Long Short-Term Memory) model specifically optimized for time-series data analysis. LSTM's ability to capture critical temporal shifts in movement patterns ensures the system's reliability in distinguishing falls from other types of motion. The combination of Mediapipe and LSTM provides a highly accurate and robust monitoring system with a significantly reduced false-positive rate, making it suitable for real-world elderly care environments. Experimental results demonstrated the efficacy of the proposed system, achieving an F1 score of 0.934, with a precision of 0.935 and a recall of 0.932. These findings highlight the system's capability to handle complex motion data effectively while maintaining high accuracy and reliability. The proposed method represents a technological advancement in fall detection systems, with promising potential for implementation in elderly monitoring systems. By improving safety and quality of life for older adults, this research contributes meaningfully to advancements in elderly care technology.
본 논문에서는 저 레이놀즈 수 영역에서 에어포일의 공기역학적 성능을 예측하기 위한 딥러닝 기반의 축소 모델을 제시하였다. 딥 러닝 기반 축소 모델에서 CFD 해석 결과의 높은 차원의 데이터를 효율적으로 다루기 위해 변이형 오토인코더를 결합한 합성곱 신경 망을 적용하였다. 부호화 거리 함수를 통해 에어포일의 형상과 유동 조건을 이미지 데이터화 하고, 이에 대해 합성곱 신경망을 매개변 수화 하였다. 또한, 전산유체역학 해석의 계산 비용으로 인한 부족한 훈련 데이터를 극복하기 위해 투영 기반의 비선형 매니폴드 데이 터 증강기법을 개발하였다. NACA 4계열 에어포일은 해석 예제로 고려하여 제안하는 프레임워크의 내삽과 외삽 정확도를 평가하였 으며 매니폴드 데이터 증강기법을 적용하여 프레임워크의 정확도 향상을 확인하였다.
The pressure sensor had been widely used to effectively monitor the flow status of the water distribution system for ensuring the reliable water supply to urban residents for providing the prompt response to potential issues such as burst and leakage. This study aims to present a method for evaluating the performance of pressure sensors in an existing water distribution system using transient data from a field pipeline system. The water distribution system in Y District, D Metropolitan City, was selected for this research. The pressure data was collected using low-accuracy pressure sensors, capturing two types of data: daily data with 1Hz and high-frequency recording data (200 Hz) according to specific transient events. The analysis of these data was grounded in the information theory, introducing entropy as a measure of the information content within the signal. This method makes it possible to evaluate the performance of pressure sensors, including identifying the most sensitive point from daily data and determining the possible errors in data collected from designated pressure sensors.
PURPOSES : The reliability of traffic volume estimates based on location intelligence data (LID) is evaluated using various statistical techniques. There are several methods for determining statistical significance or relationships between different database sets. We propose a method that best represents the statistical difference between actual LID-based traffic volume estimates and the VDS values (i.e., true values) for the same road segment. METHODS : A total of 2,496 datasets aggregated for 1-h LID and VDS data were subjected to various statistical analyses to evaluate the consistency of the two datasets. The VDS data were defined as the true values for comparison. Four different statistical techniques (procrutes, 2-sample t-test, paired-sample t-test, and model performance rating scale) were applied. RESULTS : In cases where there is a specific pattern (e.g., traffic volume distribution considering peak and off-peak times), distribution tests such as Procrustes or Kolmogorov-Smirnov are useful because not only the prediction accuracy but also the similarity of the data distribution shape is important. CONCLUSIONS : The findings of this study provide important insight into the reliability of LID-based traffic volume estimation. To evaluate the reliability between the two groups, a paired-sample t-test was considered more appropriate than the performance evaluation measure of the machine-learning model. However, it is important to set the acceptance criteria necessary to statistically determine whether the difference between the two groups in the paired-sample t-test varies according to the given problem.
PURPOSES : For autonomous vehicles, abnormal situations, such as sudden changes in driving speed and sudden stops, may occur when they leave the operational design domain. This may adversely affect the overall traffic flow by affecting not only autonomous vehicles but also the driving environment of manual vehicles. Therefore, to minimize the traffic problems and adverse effects that may occur in mixed traffic situations involving manual and autonomous vehicles, an autonomous vehicle driving support system based on traffic operation optimization is required. The main purpose of this study was to build a big-data-classification system by specifying data classification to support the self-driving of Lv.4 autonomous vehicles and matching it with spatio-temporal data. METHODS : The research methodology is explained through a review of related literature, and a traffic management index and big-dataclassification system were built. After collecting and mapping the ITS history traffic information data of an actual Living Lab city, the data were classified using the traffic management indexing method. An AI-based model was used to automatically classify traffic management indices for real-time driving support of Lv.4 autonomous vehicles. RESULTS : By evaluating the AI-based model performance using the test data from the Living Lab city, it was confirmed that the data indexing accuracy was more than 98% for the KNN, Random Forest, LightGBM, and CatBoost algorithms, but not for Logistics Regression. The data were severely unbalanced, and it was necessary to classify very low probability nonconformities; therefore, precision is also important. All four algorithms showed similarly good performances in terms of accuracy. CONCLUSIONS : This paper presents a method for efficient data classification by developing a traffic management index to easily fuse and analyze traffic data collected from various institutions and big data collected from autonomous vehicles. Additionally, EdgeRSU is presented to support the driving of Lv.4 autonomous vehicles in mixed autonomous and manual vehicles traffic situations. Finally, a database was established by classifying data automatically indexed through AI-based models to quickly collect and use data in real-time in large quantities.