검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 73

        1.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is a preliminary investigation into a method for updating analytical models using actual vibration measurement data to improve the reliability of the seismic performance evaluations. The research was conducted on 26 models with various parameters, aiming to develop an optimal analytical model that closely matches the natural frequencies of the actual building. By identifying the dynamic characteristics of the target building through vibration measurements taken just before the demolition of the structure, the natural frequency analysis results of the analytical models were compared to the measured data. Based on this comparison, an optimized method for adjusting the parameters of the analytical models was derived. Throughout the analysis, various parameters were adjusted, and the eigenvalue analysis results were corrected by comparing them with vibration measurements. Among the comparative analytical models, the model with the lowest error rate was selected. The results showed that, in all cases, the analytical model with a concrete compressive strength of 16 MPa (based on actual measurements), pin boundary conditions, and an idealized strip footing cross-section had the closest match to the actual building's natural frequencies, with an average error of less than 8%.
        4,000원
        2.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aims to improve the interpretability and transparency of forecasting results by applying an explainable AI technique to corporate default prediction models. In particular, the research addresses the challenges of data imbalance and the economic cost asymmetry of forecast errors. To tackle these issues, predictive performance was analyzed using the SMOTE-ENN imbalance sampling technique and a cost-sensitive learning approach. The main findings of the study are as follows. First, the four machine learning models used in this study (Logistic Regression, Random Forest, XGBoost, and CatBoost) produced significantly different evaluation results depending on the degree of asymmetry in forecast error costs between imbalance classes and the performance metrics applied. Second, XGBoost and CatBoost showed good predictive performance when considering variations in prediction cost asymmetry and diverse evaluation metrics. In particular, XGBoost showed the smallest gap between the actual default rate and the default judgment rate, highlighting its robustness in handling class imbalance and prediction cost asymmetry. Third, SHAP analysis revealed that total assets, net income to total assets, operating income to total assets, financial liability to total assets, and the retained earnings ratio were the most influential factors in predicting defaults. The significance of this study lies in its comprehensive evaluation of predictive performance of various ML models under class imbalance and cost asymmetry in forecast errors. Additionally, it demonstrates how explainable AI techniques can enhance the transparency and reliability of corporate default prediction models.
        4,600원
        3.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        2020년부터 국토교통부에서 추진해 온 “디지털 트윈국토”정책은 데이터 구축사업과 별도로 국가표준화도 동시에 진행되 어 표준과 실제 구축된 데이터 간의 연계성이 부족하다. 2024년에 21종의 표준 즉, 건물, 교통, 실내 공간, 수치표고모형, 지하 부문에 각각 데이터 모델, 품질, 메타데이터, 제품 사양이 제·개정되었다. 본 연구는 건물, 교통, 실내 공간, 수치표고모형 4종의 데이터 모델 표준의 유효성 검증 및 데이터 모델 간 정합성 검증을 목적으로 한다. 표준전문가의 입장과 표준 사용자의 입장에서 유효성을 7가지의 방법으로 유효성과 정합성을 검증하였다. 기존의 국토지리정보원의 건물과 교통은 메쉬(mesh)기반 의 3차원 구조를 갖는 반면에, 디지털 트윈국토 데이터의 건물과 교통, 그리고 실내 모델은 개별 객체의 구조를 갖고 있고, 기존 수치지도와 국토부의 여러 코드 리스트와도 연계할 수 있는 속성정보를 포함하고 있다. 각 건물, 교통, 실내 공간, 수치표고 모형, 각 부문 간의 데이터 모델 표준에서 객체 간 연속성 및 정합성이 보장되도록 클래스 간 논리성을 검증하였다. 검증과정에서 시범지역을 대상으로 한 데이터 구축과 시나리오 구성과 플랫폼 위에 데이터를 올려 시나리오를 적용을 통해 데이터 모델의 유효성을 이해할 수 있도록 하였다.
        5,200원
        4.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to develop a timely fall detection system aimed at improving elderly care, reducing injury risks, and promoting greater independence among older adults. Falls are a leading cause of severe complications, long-term disabilities, and even mortality in the aging population, making their detection and prevention a crucial area of public health focus. This research introduces an innovative fall detection approach by leveraging Mediapipe, a state-of-the-art computer vision tool designed for human posture tracking. By analyzing the velocity of keypoints derived from human movement data, the system is able to detect abrupt changes in motion patterns, which are indicative of potential falls. To enhance the accuracy and robustness of fall detection, this system integrates an LSTM (Long Short-Term Memory) model specifically optimized for time-series data analysis. LSTM's ability to capture critical temporal shifts in movement patterns ensures the system's reliability in distinguishing falls from other types of motion. The combination of Mediapipe and LSTM provides a highly accurate and robust monitoring system with a significantly reduced false-positive rate, making it suitable for real-world elderly care environments. Experimental results demonstrated the efficacy of the proposed system, achieving an F1 score of 0.934, with a precision of 0.935 and a recall of 0.932. These findings highlight the system's capability to handle complex motion data effectively while maintaining high accuracy and reliability. The proposed method represents a technological advancement in fall detection systems, with promising potential for implementation in elderly monitoring systems. By improving safety and quality of life for older adults, this research contributes meaningfully to advancements in elderly care technology.
        4,000원
        8.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study integrates TabTransformer and CTGAN for predicting job satisfaction among South Korean college graduates. TabTransformer handles complex tabular data relationships with self-attention, while CTGAN generates high-quality synthetic samples. The combined approach achieves an accuracy of 0.85, precision of 0.83, recall of 0.82, F1-score of 0.82, and an AUC of 0.88. Cross-validation confirms the model's robustness and generalizability with a mean accuracy of 0.85 and a standard deviation of 0.008. The integration of TabTransformer and CTGAN enhances predictive accuracy and model generalizability, providing valuable insights for employment policy and research.
        4,300원
        9.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 저 레이놀즈 수 영역에서 에어포일의 공기역학적 성능을 예측하기 위한 딥러닝 기반의 축소 모델을 제시하였다. 딥 러닝 기반 축소 모델에서 CFD 해석 결과의 높은 차원의 데이터를 효율적으로 다루기 위해 변이형 오토인코더를 결합한 합성곱 신경 망을 적용하였다. 부호화 거리 함수를 통해 에어포일의 형상과 유동 조건을 이미지 데이터화 하고, 이에 대해 합성곱 신경망을 매개변 수화 하였다. 또한, 전산유체역학 해석의 계산 비용으로 인한 부족한 훈련 데이터를 극복하기 위해 투영 기반의 비선형 매니폴드 데이 터 증강기법을 개발하였다. NACA 4계열 에어포일은 해석 예제로 고려하여 제안하는 프레임워크의 내삽과 외삽 정확도를 평가하였 으며 매니폴드 데이터 증강기법을 적용하여 프레임워크의 정확도 향상을 확인하였다.
        4,000원
        10.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the military, ammunition and explosives stored and managed can cause serious damage if mishandled, thus securing safety through the utilization of ammunition reliability data is necessary. In this study, exploratory data analysis of ammunition inspection records data is conducted to extract reliability information of stored ammunition and to predict the ammunition condition code, which represents the lifespan information of the ammunition. This study consists of three stages: ammunition inspection record data collection and preprocessing, exploratory data analysis, and classification of ammunition condition codes. For the classification of ammunition condition codes, five models based on boosting algorithms are employed (AdaBoost, GBM, XGBoost, LightGBM, CatBoost). The most superior model is selected based on the performance metrics of the model, including Accuracy, Precision, Recall, and F1-score. The ammunition in this study was primarily produced from the 1980s to the 1990s, with a trend of increased inspection volume in the early stages of production and around 30 years after production. Pre-issue inspections (PII) were predominantly conducted, and there was a tendency for the grade of ammunition condition codes to decrease as the storage period increased. The classification of ammunition condition codes showed that the CatBoost model exhibited the most superior performance, with an Accuracy of 93% and an F1-score of 93%. This study emphasizes the safety and reliability of ammunition and proposes a model for classifying ammunition condition codes by analyzing ammunition inspection record data. This model can serve as a tool to assist ammunition inspectors and is expected to enhance not only the safety of ammunition but also the efficiency of ammunition storage management.
        4,000원
        11.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder’s status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
        4,200원
        12.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        빠르게 발전하는 이미지 인식 기술에도 불구하고 표 형식의 문서와 수기로 작성된 문서를 완벽하게 디지털화하기에는 아직 어려움이 따른다. 본 연구는 표 형식의 수기 문서인 선박 항해일지를 작성하는 데에 사용되는 규칙을 이용하여 보정 작업을 수행함으로 써 OCR 결과물의 정확도를 향상시키고자 한다. 이를 통해 OCR 프로그램을 통하여 추출된 항해일지 데이터의 정확성과 신뢰성을 높일 것 으로 기대된다. 본 연구는 목포해양대학교 실습선 새누리호의 2023년에 항해한 57일간의 항해일지 데이터를 대상으로 OCR 프로그램 인 식 후 발생한 오류를 보정하여 그 정확도를 개선하고자 하였다. 이 모델은 항해일지 기재 시 고려되는 몇 가지 규칙을 활용하여 오류를 식별한 후, 식별된 오류를 보정하는 방식으로 구성하였다. 모델을 활용하여 오류를 보정 후, 그 효과를 평가하고자 보정 전과 후의 데이터 를 항차별로 구분한 후, 같은 항차의 같은 변수끼리 비교하였다. 본 모델을 활용하여 실제 셀 오류율은 약 11.8% 중 약 10.6%의 오류를 식 별하였고, 123개의 오류 중 56개를 개선하였다. 본 연구는 항해일지 중 항해정보를 기입하는 Dist.Run부터 Stand Course까지의 정보만을 대 상으로 수행하였다는 한계점이 있으므로, 추후 항해정보 뿐만 아니라 기상정보 등 항해일지의 더 많은 정보를 보정하기 위한 연구를 진 행할 예정이다.
        4,200원
        14.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        장대교량은 낮은 고유진동수와 감쇠비를 가지는 초유연구조물로 진동사용성 문제에 취약하다. 하지만 현재 국내 설계지침에서는 풍속이나 진폭에 대한 임계값을 기반으로 유해진동 발생 여부를 평가하고 있다. 본 연구에서는 장대교량에서 발생하는 유해진동을 보다 정교하게 식별하기 위하여 딥러닝 기반 신호분할 모델을 활용한 데이터 포인트 단위의 와류진동 식별 방법론을 제안한다. 특별 히 포락선을 가지는 사인파를 활용하여 와류진동에 해당하는 데이터를 합성함으로써 모델 구축에 필수적인 와류진동 데이터 획득 및 라벨링 과정을 대체하였다. 이후 푸리에 싱크로스퀴즈드 변환를 적용하여 시간-주파수 특징을 추출하여 신경망의 인풋 데이터로 사 용하였다. 합성데이터만을 이용하여 양방향 장단기 기억신경망(Bidirectional Long-Short-Term-Memory) 모델을 훈련하였고 이를 라 벨 정보를 포함한 실제 사장교의 계측데이터를 이용하여 학습한 모델과 비교하여 모델의 실시간 와류진동 식별 성능을 검증하였다.
        4,000원
        15.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하 고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산 량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀 (MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구 축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770-0.948 범위의 R2 값과 0.495mm/min- 1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU 는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능 을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.
        4,300원
        16.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
        4,000원
        17.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The Fourth Industrial Revolution and sensor technology have led to increased utilization of sensor data. In our modern society, data complexity is rising, and the extraction of valuable information has become crucial with the rapid changes in information technology (IT). Recurrent neural networks (RNN) and long short-term memory (LSTM) models have shown remarkable performance in natural language processing (NLP) and time series prediction. Consequently, there is a strong expectation that models excelling in NLP will also excel in time series prediction. However, current research on Transformer models for time series prediction remains limited. Traditional RNN and LSTM models have demonstrated superior performance compared to Transformers in big data analysis. Nevertheless, with continuous advancements in Transformer models, such as GPT-2 (Generative Pre-trained Transformer 2) and ProphetNet, they have gained attention in the field of time series prediction. This study aims to evaluate the classification performance and interval prediction of remaining useful life (RUL) using an advanced Transformer model. The performance of each model will be utilized to establish a health index (HI) for cutting blades, enabling real-time monitoring of machine health. The results are expected to provide valuable insights for machine monitoring, evaluation, and management, confirming the effectiveness of advanced Transformer models in time series analysis when applied in industrial settings.
        4,900원
        18.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        현재의 해양산업의 기술은 스마트 선박 및 자율운항선박 등의 개발과 같은 자율화 및 지능화와 환경규제의 강화에 맞추어 선 박의 운항 효율성을 개선하는 친환경 선박을 위한 기술이 함께 개발되고 있다. 이러한 흐름에 맞추어, 세계각국에서는 선박의 안전운항을 보장하는 선에서 선박운항효율을 극대화하기 위해 다양한 방식으로 노력하고 있다. 본 연구에서는, 현존하는 선박운항효율 개선 기술이 운항 당시의 기상환경, 선박조종 등의 선박운항상태를 실시간으로 반영하지 못하는 문제를 개선하기 위해, 선박에서 수집한 선박운항데 이터를 활용하여 실시간 선박운항효율 분석모델을 개발하고자 한다. 본 연구의 실시간 선박운항효율 분석모델은 연료소모를 기준으로 판 단한 선박운항효율과 당시의 선박운항상태를 감안하여 판단한 선박운항효율을 비교하여, 식별된 선박운항효율의 타당성을 확인할 수 있 는 모델이다. 분석의 주요 내용은 대상선박의 선정과 선박운항데이터의 수집, 선박운항효율 특성과 선박운항상태 특성의 구분, 그리고 이 를 활용한 분류모델의 개발을 포함한다. 연구의 결과는 기존의 선박운항효율과 항해 당시 선박운항상태를 감안한 운항효율을 제시하여 선박 운항자의 의사결정을 지원하여 운항효율을 개선하고자 한다.
        4,000원
        19.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Welding is one of representative manufacturing processes in the industrial field. Cryogenic storage containers are also manufactured through welding, and conversion to laser welding is issue in the field due to many advantages. Since welding causes thermal-elastic deformation, design considering distortion is required. Prediction of distortion through FEM is essential, but laser welding has difficulties in the field because there is no representative heat source model. The author presented the model that can cover various models using a multi-layer heat source model in previous studies. However the previous study has a limitation which is a welding heat source model must be derived after performing bead on plate welding. Thus this study was attempted to estimate the welding heat source parameters by comparing the shape of bead under various conditions. First, the difference between penetration shape and welding heat source parameters according to welding power was analyzed. The radius of the welding heat source increased according to the welding power, and the depth of the welding heat source also increased. The correlation between the penetration shape and the welding heat source parameter appears at a similar rate, however the follow-up research is necessary with more model data.
        4,000원
        20.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ball stud parts are manufactured by a cold forging process, and fastening with other parts is secured through a head part cutting process. In order to improve process quality, stabilization of the forging quality of the head is given priority. To this end, in this study, a predictive model was developed for the purpose of improving forging quality. The prediction accuracy of the model based on 450 data sets acquired from the manufacturing site was low. As a result of gradually multiplying the data set based on FE simulation, it was expected that it would be possible to develop a predictive model with an accuracy of about 95%. It is essential to build automated labeling of forging load and dimensional data at manufacturing sites, and to apply a refinement algorithm for filtering data sets. Finally, in order to optimize the ball stud manufacturing process, it is necessary to develop a quality prediction model linked to the forging and cutting processes.
        4,000원
        1 2 3 4