세계적인 환경 규제로 인해 마그네슘 합금과 같은 경량 소재에 대한 수요가 증가하고 있으며, 마그네슘 합금 소재의 다양한 산업계 적용을 위한 용접 및 접합 방식에 대한 연구도 지속적으로 수행되고 있다. 앞선 Part I 연구에서는 마그네슘 합금에 대한 파이버 레이저 Bead on Plate(BOP) 실험을 수행하여 맞대기 용접 조건의 확보를 위한 기초 연구를 수행하였으며, 본 연구에서는 Part I의 기초 BOP 실험에서 도출된 적합한 레이저 출력과 용접 속도를 바탕으로 두께 3mm의 AZ31B 마그네슘 합금에 대해 맞대기 용접을 시행하였고, 인장시험 및 경도시험을 수행한 후 기계 물성 데이터를 분석하였다. 분석 결과 레이저 출력 2.0 kW, 50 mm/s (Heat input)의 조건에서 항복강도 151.5 MPa, 인장강도 224.1 Mpa으로 우수한 인장, 항복강도를 얻을 수 있었다.
Research into lightweighting to improve vehicle fuel efficiency and reduce exhaust emissions continues as environmental regulations become increasingly stringent. Magnesium alloys, chosen for their lightweight properties, are more than 35% lighter than aluminum alloys and also exhibit excellent mechanical characteristics. While magnesium alloys are commonly utilized in arc welding processes like GTAW and GMAW, they pose challenges such as high residual stresses and welding defects. Laser welding, on the other hand, offers the advantage of precise heat input, enabling deep and high-quality welds while minimizing welding distortion. In this study, fiber laser welding was employed to weld a 4.0mm thick AZ31B-H24 using the Bead on Plate technique. A total of 10 different welding conditions were tested with fiber laser welding, and the cross-sections of the weld beads were examined. Weld bead shapes were measured based on five parameters. The results allowed for an evaluation of the weldability of AZ31B-H24 using fiber laser welding.
The purpose of this research is to investigate the statistical behavior of fatigue crack propagation(FCP) in magnesium alloy AZ31. FCP tests have been performed on compact specimens of AZ31 at load ratio conditions and maximum fatigue load conditions to obtain statistical data of FCP. It was found that the variability of fatigue crack propagation rate was significantly large at initial stage of FCP and gradually became smaller as the fatigue crack propagated. The finding of the study showed that increasing the load ratio could increase the variability of fatigue crack propagation rate at initial FCP stage. The samller the load ratio, the higher the fatigue crack propagation rate at initial stage. It was also found that the load ratio is a factor affecting the fatigue crack propagation rate in magnesium alloy.
PURPOSES : In this study, a method to use magnesium phosphate ceramic (MPC) concrete for the surface maintenance of airport pavements with jointed concrete is developed.
METHODS : To investigate the application of a material incorporated with MPC for the surface maintenance of airport pavements with jointed concrete, structures with various cross-sections and thicknesses were constructed. The cross-section of the structure was modeled for the surface maintenance of four types of pavements and typical pavement construction processes, such as cutting, cleaning, production and casting, finishing, hardening, and joint reinstallation. Subsequently, the hours required for each process was determined.
RESULTS : The MPC concrete used for the surface maintenance of airport pavements with jointed concrete demonstrate excellent performance. The MPC concrete indicates a compressive strength exceeding 25 MPa for 2 h, and its hydration heat is 52.9 ℃~61.2 ℃. Meanwhile, the crushing and cleaning performed during the production and casting of the MPC require a significant amount of time. Specifically, for a partial repair process, a total of 6 h is sufficient under traffic control, although this duration is inadequate for a complete repair process.
CONCLUSIONS : MPC concrete is advantageous for the surface maintenance of airport pavements with jointed concrete. In fact, MPC concrete can be sufficiently constructed using existing concrete maintenance equipment, and partial repair works spanning a cross-sectional area of 11 m2 can be completed in 1 d. In addition, if the crushing and cleaning are performed separately from production and construction, then repair work using MPC concrete can be performed at a larger scale.
The medicines for treating osteoporosis currently in use have minor to severe side effects, and can be financially burdensome. Thus, there is a need for prevention and alternative supplement that is relatively inexpensive, and can be easily consumed daily as an alternative dietary therapy. In this study, bone marrow density of the spine and femur of osteoporosis patients were checked before and after consuming complex composed of calcium and magnesium, considered to be the core of bone mineral content. November 2017-November 2021, patients with T-score of less than -2.5 or -1.0 < T-score < -2.5 with history of fractures or recent fractures were enrolled. The data of 60 patients who orally administered Ionized Cal/MagTM Complex were reviewed retrospectively, and it was significantly confirmed that the average value of T-score was up-regulated by 0.5. Additionally, the cumulative dose was observed to have a positive effect, on the improvement of BMD in the 2nd Lumbar and Femur neck. It is expected that better results will be achieved if use of the supplement is continued.
Magnesium alloy is the lightest practical metal. It has excellent specific strength and recyclability as well as abundant reserves, and is expected to be a next-generation structural metal material following aluminum alloy. This paper investigated the possibility of thin plate fabrication by applying a overheating treatment to the melt drag method, and investigating the surface shape of the thin plate, grain size, grain size distribution, and Vickers hardness. When the overheating treatment was applied to magnesium alloy, the grains were refined, so it is expected that further refinement of grains can be realized if the overheating treatment is applied to the melt drag method. By applying overheating treatment, it was possible to fabricate a thin plate of magnesium alloy using the melt drag method, and a microstructure with a minimum grain size of around 12 μm was obtained. As the overheating treatment temperature increased, void defects increased on the roll surface of the thin plate, and holding time had no effect on the surface shape of the thin plate. The fabricated thin plate showed uniform grain size distribution. When the holding times were 0 and 30 min, the grain size was refined, and the effect of the holding time became smaller as the overheating treatment temperature increased. As the overheating temperature becomes higher, the grain size becomes finer, and the finer the grain size is, the higher the Vickers hardness.
Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.
생체용 마그네슘 합금은 전연성 부족과 열에 의한 팽창률 변화가 심하여 2mm 이하의 판재를 만드는 것이 매우 어려움 문제이다. 이를 해결하기 위해 압연 방식, 세이퍼 방식, 밀링 방식 등의 다양한 방법이 존재할 수 있다. 압연 방식을 적용하여 실험을 진행하였으나 Mg 합금은 전연성, 취성의 문제로 인해 파괴되는 현상이 발생하였다. 그리고 세이퍼 방식은 가공시 충격이 발생하는 단속절삭이기 때문에 표면에 자국이 남게 되고 시험편이 휘어지는 현상이 발생하는 문제가 발생하였다. 최종적으로 밀링 방식으로 전환하여 가공실험을 수행해 본 결과 매우 만족할 만한 결과값을 얻게 되었고, 이 결과는 절삭조건을 절삭회전수 1000rpm, 이송속도 127mm/rev, 절삭깊이 0.5mm로 엔드밀 사용하여 가공하였을 때 Ra = 0.44㎛의 표면거칠기값을 얻게 되었다. 본 논문에서는 생체 마그네슘 합금재료로 미소판재를 가공하였을 때 매우 좋은 표면을 유지하며 2mm 이하의 미소 두께를 지속적으로 가공이 가능하도록 하였으며, 다양한 절삭조건, 2날과 4날 엔드밀 날수 변화 등을 통해 최적의 가공조건을 알아보는 실험을 진행하였다.
AZ31 magnesium alloy was used to manufacture a thin plate using a melt drag method. The effects of roll speed, molten metal temperature, and molten metal height, which are the basic factors of the melt drag method, on the surface shape, the thickness of the thin plate, Vickers hardness, and microstructure of the thin plate were investigated. It was possible to manufacture AZ31 magnesium alloy thin plate at the roll speed range of 1 to 90 m/min. The thickness of the thin plate, manufactured while changing only the roll speed, was about 1.8 to 8.8 mm. The shape of the solidified roll surface was affected by two conditions, the roll speed and the molten metal height, and the Vickers hardness of the manufactured magnesium alloy thin plate value ranged from Hv38~Hv60. The microstructure of the thin plate produced by this process was an equiaxed crystal and showed a uniform grain size distribution. The grain size was greatly affected by the contact state between the molten metal and the solidification roll, and the amount of reactive solids and liquids scraped at the same time as the thin plate. The average grain size of the thin plate fabricated in the range of these experimental conditions changed to about 50-300 μm.
The objectives of this paper are to evaluate the factors affecting the fatigue crack propagation(FCP) behavior in AZ31 magnesium alloy. FCP experiments have been performed on the specimens of AZ31 magnesium alloy under various conditions such as a loading frequency, a specimen thickness, a maximum fatigue load, and a load ratio and the obtained results were analyzed to find the influence factors on the FCP behavior in magnesium alloy. It is necessary to consider the influence factors for the design and the maintenance of lightweight structures. The correlation between the crack growth rate exponent and the crack growth rate coefficient, which are FCP behavior parameters, was also analyzed and the regression model was presented.
To improve the shortcomings and expand the advantages of the single-roll melt drag method, which is a type of continuous strip casting method, the melt drag method with a molding belt is applied to AZ31 magnesium alloy. By attaching the forming belt to the melt drag method, the cooling condition of the thin plate is improved, making it possible to manufacture thin plates even at high roll speed of 100 m/min or more. In addition, it is very effective for continuous production of thin plates to suppress oxidation of the molten metal on the roll contact surface by selecting the protective gas. As a result of investigating the relationship between the contact time between the molten metal and the roll and the thickness of the sheet, it is possible to estimate the thickness of the sheet from the experimental conditions. The relationship between the thin plate thickness and the grain size is one in which the thinner the thin plate is, the faster the cooling rate of the thin plate is, resulting in finer grain size. The contact state between the molten metal and the roll greatly affects the grain size, and the minimum average grain size is 72 μm. The thin plate produced using this experimental equipment can be rolled, and the rolled sample has no large cracks. The tensile test results show a tensile strength of 303 MPa.
An investigation is performed to clarify the manufacturing conditions of pure magnesium and AZ31 magnesium alloy thin plate using the melt drag method. By the melt drag method, suitable for magnesium molten metal, pure magnesium can be produced as a continuous thin plate with a thickness of 1.4 mm to 2.4 mm in the range of 5 m/min to 20 m/min of roll speed, and the width of the thin plate to the nozzle outlet width. AZ31 magnesium alloy is able to produce a continuous sheet of thickness in the range of 5 m/min to 30 m/min in roll circumferential speed, with a thickness of 0.6 mm to 1.6 mm and a width of the sheet matching the nozzle outlet width. In the magnesium melt drag method, the faster the circumferential speed of the roll, the shorter the contact time between the molten metal and the roll, and it is found that the thickness of the produced thin plate becomes thinner. The effect of the circumferential roll speed on the thickness of the thin plate is evident in the low roll circumferential region, where the circumferential speed is 30 m/min or less. The AZ31 thin plate manufactured by the melt drag method has a finer grain size as the thickness of the thin plate decreases, but it is currently judged that this is not the effect of cooling by the roll.
Recently magnesium alloy sheet has been used as a lightweight material in transportation area. Warm forming is a forming method that improves formability and reduces springback. The magnesium alloy sheet has a characteristic that large difference of flow stress increases depending on strain rate at high temperature. These characteristics cause low dimensional accuracy of formed products. In this study, experiments were performed on the 2D-draw bending with respect to the temperature and forming speed in order to investigate the effects of strain rate and temperature. It was found that as the temperature increases, spinrgback of 2D-draw bending decreased and formability of AZ31B increased. Additionally, the effect of the punch speed was investigated. At 250°C, as the punch speed increased, the springback of 2D-draw bending decreased.
In this study, attention has been focused on magnesium materials, which are widely used for lightening of electronic products and mobile phones. Therefore, a polishing apparatus was fabricated by replacing the SiC abrasive used for polished surface of magnesium plate with a ceramic abrasive. The following conclusions were obtained. It is believed that the increase in productivity of 50% compared to the conventional cross-sectional polishing due to the double-side polishing of magnesium sheet can contribute to increase the company's sales. The surface roughness was measured by polishing the plate using a magnesium plate mirror polisher. The Ra, Rmax and Rz values were 0.43, 0.54 and 0.54, respectively. In this study, the optimum polishing speed was 800 m/s when the surface was polished with a magnesium surface polishing device designed and manufactured as a prototype.
Metallic tantalum powder is manufactured by reducing tantalum oxide (Ta2O5) with magnesium gas at 1,073–1,223 K in a reactor under argon gas. The high thermodynamic stability of magnesium oxide makes the reduction reaction from tantalum oxide into tantalum powder possible. The microstructure after the reduction reaction has the form of a mixture of tantalum and magnesium oxide, and the latter could be entirely eliminated by dissolving in weak hydrochloric acid. The powder size in SEM microstructure for the tantalum powder increases after acid leaching in the range of 50–300 nm, and its internal crystallite sizes are observed to be 11.5 to 24.7 nm with increasing reduction temperatures. Moreover, the optimized reduction temperature is found to be 1,173 K as the minimum oxygen concentration is approximately 1.3 wt.%.