2016년 경주지진(규모 5.8) 및 2017년 포항지진(규모 5.4)은 1978년 대한민국 지진 관측 이래 국내 에서 발생한 지진 중 가장 큰 피해가 발생한 지진으로 기록되었다. 지진의 피해사례는 다양한 분야에 서 발생되었으며, 그중 교량 구조물에도 부분적인 피해가 다수 발생하였다. 국내에서는 교량구조물에 대한 내진보강 사업을 지속적으로 진행하고 있으며, 내진 보강의 공법 중 면진받침을 적용하여 구조물 의 내진성능을 확보하는 사례는 지속적으로 증가하고 있는 추세이다. 펜들럼 교량받침은 중간판의 기 하학적인 곡률과 고강도 마찰재를 이용하여 감쇠 기능뿐 아니라 복원 기능을 구비하고 있는 면진받침 으로써 제품 크기가 작아 시공성, 경제성이 우수하여 국내에서 가장 많이 사용되고 있는 대표적인 면 진장치이다. 펜들럼 받침의 경우 지진력 감쇠 및 회전, 이동량 수용을 위하여 2면의 곡면 구조로 진자 운동을 하므로 수평 변위 발생 시 필수적으로 수직 단차가 발생하는 구조이다. 또한 면압에 따라 마찰 계수가 달라지는 마찰재의 특성을 고려한 특성치 산출이 필요한 제품이다. 이 연구에서는 펜들럼 받침 의 다양한 면압에 따른 동적 시험을 실시하여 실제 거동과 일치하는 설계 특성치 산출법을 정립하였 다. 또한 펜들럼 면진받침의 진자 운동을 반영한 모양의 가이드와 프리세팅 전, 후에도 받침 상판의 수평을 유지할 수 있는 장치를 실물 크기로 제작하여 공인기관에 의뢰하여 프리세팅 시험 및 완제품 성능 시험을 실시하여 그 성능을 검증하였다. 성능 시험 결과 곡률에 따른 프리세팅이 가능함을 확인 하였다. 또한, 곡률형 프리세팅을 적용한 펜들럼 면진받침이 구조적으로 안전함을 확인하였다.
본 연구에서는 마찰모델에 따라 다른 마찰진자시스템(FPS)이 적용된 교량의 성능을 비교・분석하기 위해 구조해석을 수행하였다. 마찰해석모델 별 성능을 분석하기 위해 PVDF/MgO 마찰재의 마찰계수를 활용하여 쿨롱 마찰모델과 속도 의존 마찰모델을 구축했다. 쿨롱 마찰모델은 마찰속도와 관계없이 단일 마찰계수를 사용하며, 속도 의존 마찰모델은 마찰속도에 따른 마찰계수의 변화를 반영하 는 마찰모델이다. 지진해석으로 비선형 시간 이력 해석과 지진 취약도 해석을 수행하여 구조물의 응답을 확인하였다. 마찰모델에 따 른 바닥판과 교각의 지진 응답을 활용해 면진된 교량의 성능을 분석하였으며, 면진된 교량의 성능을 효과적으로 평가할 수 있는 마찰 모델을 분석했다.
The seismic behaviors of the arch structure vary according to the rise-span ratio of the arch structure. In this study, the rise-span ratio (H/L) of the example arch structure was set to 1/4, 1/6, and 1/8. And the installation angle of the seismic isolator was set to 15°, 30°, 45°, 60° and 90°. The installation angles of the seismic isolator were set by analyzing the horizontal and vertical reaction forces according to the rise-span ratio of the arch structure. Due to the geometrical and dynamic characteristics of the arch structure, the lower the rise-span ratio, the greater the horizontal reaction force of the static load, but the smaller the horizontal reaction force of the dynamic load. And if the seismic isolator is installed in the direction of the resultant force of the reaction forces caused by the seismic load, the horizontal seismic response becomes small. Also, as the installation angle of the seismic isolator increases, the hysteresis behavior of the seismic isolator shows a plastic behavior, and residual deformation appears even after the seismic load is removed. In the design of seismic isolators for seismic response control of large space structures such as arch structures, horizontal and vertical reaction forces should be considered.
Communication facilities play an essential role in disaster situations. Therefore, communication facilities need to have structural and functional safety during and after earthquakes. Recently, technology for partial seismic isolation has been increasing to protect data facilities and communication equipment installed in buildings from earthquakes. However, excessive displacement may occur in the seismic isolator during an earthquake due to the resonance between the building and the seismic isolator having long-period characteristics, which may cause overturning and separation of the installed equipment. In this study, analytical and experimental studies were conducted to evaluate the safety of seismic isolators installed in high-rise buildings. It was confirmed that damages might occur in buildings' seismic isolator, with resonance characteristics of less than 1 Hz.
구조물을 지진 위험으로부터 완화시키기 위한 마찰면진장치의 상용화된 마찰재료 중 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)은 내화학성과 마찰성능이 우수하다. 그러나 PTFE는 상대적으로 낮은 내마모성을 가지므로 경제적인 마찰재료이며 산화마그네슘(oxide magnesium, MgO)으로 내마모성을 증가시킨 개선된 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVDF)를 PTFE 의 대안으로 제안하였다. 개발된 PVDF/MgO 마찰재를 이용하여 실험을 통해 마찰성능을 측정하였으며 PTFE의 마찰성능과 비교하였다. 그리고 측정된 마찰계수를 이용하여 마찰면진장치를 설계하였다. 마찰면진장치의 성능은 교량의 비선형 시간이력 해석을 통해 확인하였고, 이를 통해 마찰면진장치의 마찰재료로 PTFE를 대체하여 PVDF/MgO를 사용하는 것에 대한 타당성을 평가하였다.
When an unexpected excessive seismic load is applied to the base isolation of arch structure, the seismic displacement of the base isolation may be very large beyond the limit displacement of base isolation. These excessive displacement of the base isolation causes a large displacement in the upper structure and large displacement of upper structure causes structural damage. Therefore, in order to limit the seismic displacement response of the base isolation, it is necessary to install an additional device such as an anti-uplift device to the base isolation. In this study, the installation direction of the base isolation and the control performance of the base isolation installed anti-uplift device were investigated. The installation direction of the base isolation of the arch structure is determined by considering the horizontal and vertical reaction forces of the arch structure. In addition, the separation distance of the anti-uplift device is determined in consideration of the design displacement of the base isolation and the displacement of the arch structure.
If an excessive displacement occurs in the base isolation system, the structure will be damaged due to overturning of the upper structure. In this study, we analyze the behavior of base isolation by applying earthquake to base isolation with anti-uplift device. In the case of structures that generate horizontal reaction forces such as arch structures, horizontal reaction forces must be considered in the design of the base isolation and structural members. And anti-uplift device for preventing the excessive displacement of the base isolation system is needed.
The tendency to use a probabilistic design method rather than a deterministic design method for the design of nuclear power plants (NPPs) will increase because their safety should be considered and strictly controlled in relation to various causes of damage. The distance between a seismically isolated NPP structure and a moat wall is called the clearance to stop. The clearance to stop is obtained from the 90th percentile displacement response of a seismically isolated NPP subject to a beyond design basis earthquake (BDBE) in the probabilistic design method. The purpose of this study is to analyze the effects of heating and buckling effects on the 90th percentile displacement response of a lead-rubber bearing (LRB) subject to a BDBE. The analysis results show that considering the heating and buckling effects to estimate the clearance to stop is conservative in the evaluation of the 90th percentile displacement response. If these two effects are not taken into account in the calculation of the clearance to stop, the underestimation of the clearance to stop causes unexpected damage because of an increase in the collision probability between the moat wall and the seismically isolated NPP.
The objective of this study is to investigate the earthquake response for the design of 100m spanned single-layer lattice dome. The plastic hinge analysis and eigenvalue buckling analysis are performed to estimate the ultimate load of single-layered lattice domes under vertical loads. In order to ensure the stability of lattice domes, it is investigated for the plastic hinge progressive status by the pushover increment analysis considering the elasto-plastic connection. One of the most effective methods to reduce the earthquake response of large span domes is to install the LRB isolation system of a dome. The authors discuss the reducing effect for the earthquake dynamic response of 100m spanned single-layered lattice domes. The LRB seismic isolation system can greatly reduce the dynamic response of lattice domes for the horizontal and vertical earthquake ground motion.
The objective of this study is to investigate the response reducing effect of a seismic isolation system installed between 300m dome and supports under both horizontal and vertical seismic ground motion. The time history analysis is performed to investigate the dynamic behavior of single layer lattice domes with and without a lead rubber bearing seismic isolation system. In order to ensure the seismic performance of lattice domes against strong earthquakes, it is important to investigate the mechanical characteristics of dynamic response. Horizontal and vertical seismic ground motions cause a large asymmetric vertical response of large span domes. One of the most effective methods to reduce the dynamic response is to install a seismic isolation system for observing seismic ground motion at the base of the dome. This paper discusses the dynamic response characteristics of 300m single layer lattice domes supported on a lead rubber seismic isolation device under horizontal and vertical seismic ground motions.
Since the 2010 year, an occurring number of grand scale earthquakes which above magnitude 5.0 have increased in the world. Many types of research that deal with reducing the damage to the structure from a large-scale earthquake have proceeded. A system which could mitigate strong vertical earthquake's acceleration might apply to structure, since big earthquake cases that occurred lots of loss in Tokyo and Kobe of Japan. A plenty of bearings have installed to mitigate vibration but many parts of these lack efficient ability what we want. In addition, former vertical isolation bearings to apply for the structure have both price and size limits according to material characteristics. Therefore, this paper proposes a new type of device that is made by utilized engineering plastic and improves hitherto used vertical isolation bearing's fault.
As the number of high-rise buildings increases, a mid-story isolation system has been proposed for high-rise buildings. Due to structural problems, an appropriate isolation layer displacement is required for an isolation system. In this study, the mid-story isolation system was designed and the seismic response of the structure was investigated by varying the yield strength and the horizontal stiffness of the seismic isolation system. To do this, a model with an isolation layer at the bottom of 15th floor of a 20-story building was used as an example structure. Kobe(1995) and Nihonkai-Chubu(1983) earthquake are used as earthquake excitations. The yield strength and the horizontal stiffness of the seismic isolation system were varied to determine the seismic displacement and the story drift ratio of the structure. Based on the analytical results, as the yield strength and horizontal stiffness increase, the displacement of the isolation layer decreases. The story drift ratio decreases and then increases. The displacement of the isolation layer and the story drift ratio are inversely proportional. Increasing the displacement of the isolation layer to reduce the story drift ratio can cause the structure to become unstable. Therefore, an engineer should choose the appropriate yield strength and horizontal stiffness in consideration of the safety and efficiency of the structure when a mid-story isolation system for a high-rise building is designed.
The seismically isolated nuclear power plants shall be designed for design basis earthquake (DBE) and considered to ensure safety against beyond design basis earthquake (BDBE). In order to limit the excessive displacement of the seismic isolation system of the seismically isolated structure, the moat is installed at a certain distance from the upper mat supporting the superstructure. This certain distance is called clearance to stop (CS) and is calculated from the 90th percentile displacement of seismic isolation system subjected to BDBE. For design purposes, the CS can be obtained simply by multiplying the median displacement of the seismic isolation system against DBE by scale factor with a value of 3. The DBE and BDBE used in this study were generated by using 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum. In addition, latin hyper cube sampling was applied to generate 30 sets of artificial earthquakes corresponding to maximum - minimum spectra. For the DBE, the median displacement and the 99th percentile displacement of the seismic isolation system were calculated. For the BDBE, the suitability of the scale factor was assessed after calculating the 90th percentile displacement of the seismic isolation system.
In this study, the boundary non-linear analysis of the sky bridge subjected to walking load and running load is performed. The sky bridge is installed in the mid-story between two buildings and the walking load and running load induced by pedestrians are measured by load cell. LRB is modeled as a non-linear hysteresis model to accurately represent the behavior of LRB. For the serviceability evaluation of sky bridge, the acceleration responses of sky bridge are analyzed based on ISO 2631-2 and the velocity response are analyzed based on standards Bachmann &Amann. In serviceability evaluation of this sky bridge, the pedestrian can not perceive the vibration except for resonance running loads consequently. Therefore, it is concluded that this sky bridge haven’t problem in the serviceability.
The seismic isolation system reduces the seismic vibration that is transmitted from foundation to upper structure. This seismic isolation system can be classified into base isolation and mid-story isolation by the installation location. In this study, the seismic behavior of dome structure with mid-story isolation is analyzed to verify the effect of seismic isolation. Mid-story isolation is more effective than base isolation to reduce the seismic responses of roof structure. Also, this isolation would be excellent in structural characteristics and construction.
Recently, many people have become interested in seismic stability enhancement and a chain of research and development be proceed for application of nuclear power plant according to increase the frequency and magnitude of earthquake event. Such as seismic isolation system is applied to general structure (architecture, bridge and LNG tank etc.) from ancient times. But the application results is limited for Nuclear power plant. In this paper, we proposed a stability of variable axial load from beyond design basis earthquake in Nuclear power plant. Also, the change of stiffness in isolator from the application of generally design equation is not equal to according to change in axial load compare with the experimental result in variable axial load. Therefore we proposed the empirical formula of design equation from test result of full-scale multi-lead rubber bearing for seismic analysis with real behavior (variable axial load) in the earthquake motion.
The Eradi Quake System (EQS) is a seismic isolation bearing system designed to minimize forces and displacements experienced by structures subjected to ground motion. The EQS dissipates seismic energy through friction of Poly Tetra Fluoro Ethylene (PTFE) disk pad. In general, a force-displacement relationship of EQS has post yield stiffness hardening during large inelastic displacement. In this study, seismic responses of seismically isolated nuclear power plant (NPP) subjected to design basis earthquake (DBE) and beyond design basis earthquakes (150% DBE and 167% DBE) are compared considering the post yield stiffness hardening effect of EQS. From the results, it can be observed that if the post-yield stiffness hardening effect of EQS is increased, the displacement response of EQS is reduced, and the acceleration and shear responses of containment structures of NPP is increased.
This paper presents the performance improvement of an EQS (Eradic Quake System) device applied to a nuclear power plant. For the nuclear facility, the EQS device needs to be ensured to have high quality, flexibility of design and reliability. To improve the reliability of the design, the hysteresis of the device must be exactly predicted. The friction coefficient of PTFE (PolyTetraFluoroEthylene) and the stiffness of the MER-Spring are considered as the factors influencing the hysteresis curve. In this paper, those factors are analysed to predict the behavior of the device and to improve the equipment of the EQS device. The results of the improved EQS device have been verified via a tests to be comparable with the predicted results. The estimation results indicate that considering those factors is more appropriate than the results of the previous design and method.