검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 27

        1.
        2020.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A commercial AA1070 alloy for electrical wire is severely deformed by drawing process in which a rod with an initial diameter of 9mm into is reduced to a wire of 2mm diameter. The drawn AA1070 wire is then annealed at various temperatures from 200 to 450 oC for 2h. Changes in microstructure, mechanical properties and electrical properties of the specimens with annealing temperature are investigated in detail. The specimen begins partially to recrystallize at 250 oC; above 300 oC it is covered with equiaxed recrystallized grains over all regions. Fiber textures of {110}<111> and {112}<111> components are mainly developed, and {110}<001> texture is partially developed as well. The tensile strength tends to decrease with annealing temperature due to the occurrence of recovery or/and recrystallization. On the other hand, the elongation of the annealed wire increases with the annealing temperature, and reaches a maximum value of 33.3 % at 300 oC. Electric conductivity of the specimens increases with annealing temperature, and reaches a maximum value of 62.6%IACS after annealing at 450 oC. These results are discussed in comparison with those for the other aluminum alloy.
        4,000원
        4.
        2017.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Stainless steel is known as a corrosion-resistant material and this superior ability could be a desired property for a pinhole aperture operated in a corrosive environment and thereby be able to maintain both smoothness and a perfect circular shape in order to achieve precise beam alignment. Laser drilling has widely been preferred when placing holes into stainless steel due to its non-contact method of machining. In addition, this method is capable of performing delicate machining while inducing relatively low amounts of heat in the affected zone in comparison with other traditional machining techniques such as punching. Laser drilling is also beneficial for specimens having a thin thickness since manufacturing tolerances are minimal in this case. In this paper, we have attempted to produce holes of various diameters in 10 m thick stainless steel foil by using a femtosecond laser trepanned method. We have demonstrated these to be of perfect circular shape and adhering to low tolerance manufacturing by adjusting the beam parameters. In addition, holes with various diameters have been made by employing previously selected machining parameters and the viability of pinhole apertures fabricated by laser drilling have been evaluated.
        4,000원
        5.
        2016.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.
        4,000원
        6.
        2015.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural analysis of a (α+β) Ti alloy was investigated to consider phase transformation in each step of thethermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated withsolid solution at 880oC, rolling at 880oC and annealing at 800oC. In the STQ state, the TAF microstructure was composedof a normal hcp α and metastable β phase. In a rolled state, it was composed of fine B2 precipitates in an α phase, whichhad high Fe segregation and a coherent relationship with the β matrix. Finally, in the annealing state, the fine B2 precipitateshad disappeared in the α phase and had gone to the boundary of the α and β phase. On the other hand, in a lower rollingtemperature of 704oC, the B2 precipitates were more coarse in both the α and the boundary of α and β phase. We concludedthat microstructural change affects the mechanical properties of formability including rolling defects and cracks.
        4,000원
        7.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The optical film for light luminance improvement of back light unit that is used in light emitting diode/liquid crystal display and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimized as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Variation of Burr and chip shape were discussed by material properties and machining method.
        4,000원
        8.
        2012.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of H2SO4, H3PO4, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.
        4,000원
        9.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A sample of ultra low carbon IF steel was processed by six-layer stack accumulative roll-bonding (ARB) and annealed. The ARB was conducted at ambient temperature after deforming the as-received material to a thickness of 0.5 mm by 50% cold rolling. The ARB was performed for a six-layer stacked, i.e. a 3 mm thick sheet, up to 3 cycles (an equivalent strain of ~7.0). In each ARB cycle, the stacked sheets were, first, deformed to 1.5 mm thickness by 50% rolling and then reduced to 0.5 mm thickness, as the starting thickness, by multi-pass rolling without lubrication. The specimen after 3 cycles was then annealed for 0.5 h at various temperatures ranging from 673 to 973 K. The microstructural evolution with the annealing temperature for the 3-cycle ARB processed IF steel was investigated in detail by transmission electron microscopy observation. The ARB processed IF steel exhibited mainly a dislocation cell lamella structure with relatively high dislocation density in which the subgrains were partially observed. The selected area diffraction (SAD) patterns suggested that the misorientation between neighboring cells or subgrains was very small. The thickness of the grains increased in a gradual way up to 873 K, but above 898 K it increased drastically. As a result, the grains came to have an equiaxed morphology at 898 K, in which the width and the thickness of the grains were almost identical. The grain growth occurred actively at temperatures above 923 K.
        4,000원
        10.
        2011.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The present study was carried out to evaluate the microstructural and mechanical properties of cross-roll rolled pure copper sheets, and the results were compared with those obtained for conventionally rolled sheets. For this work, pure copper (99.99 mass%) sheets with thickness of 5 mm were prepared as the starting material. The sheets were cold rolled to 90% thickness reduction and subsequently annealed at 400˚C for 30 min. Also, to analyze the grain boundary character distributions (GBCDs) on the materials, the electron back-scattered diffraction (EBSD) technique was introduced. The resulting cold-rolled and annealed sheets had considerably finer grains than the initial sheets with an average size of 100 μM. In particular, the average grain size became smaller by cross-roll rolling (6.5 μM) than by conventional rolling (9.8 μM). These grain refinements directly led to enhanced mechanical properties such as Vickers micro-hardness and tensile strength, and thus the values showed greater increases upon cross-roll rolling process than after conventional rolling. Furthermore, the texture development of<112>//ND in the cross-roll rolling processed material provided greater enhancement of mechanical properties relative to the case of the conventional rolling processed material. In the present study, we systematically discuss the enhancement of mechanical properties in terms of grain refinement and texture distribution developed by the different rolling processes.
        4,000원
        11.
        2009.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the automatic laser-piercing has become a subject of growing research area in the hydroforming of car body and robotic fields. Generally, the laser-cutting with 6-DOF robot system has 3D error due to a gear backlash and inaccurate calibration method between sensor and cutting-tool. The objective of this article is to study the automatic laser-cutting for the micro-hole piercing of engine cradles. The development of redundant micro-control module and laser vision sensor contributes to the implementation of precise laser cutting. To obtain higher a performance of control module, the calibration algorithm between cutting-tool and laser sensor is required. The implementation of this methodology will be describe. The optimal path generation for a good quality of cutting section is also explained in detail. The experimental results demonstrate the successful operation in the automatic micro-hole piercing. It shows a validity of the micro-motion mechanism and robot‘s calibration algorithm in laser sensor.
        4,000원
        12.
        2008.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The through-thickness variations of strain and microstructure of high-speed hot rolled 1050 pure aluminum sheet were investigated. The specimens of 1050 aluminum were rolled at temperatures ranging from 410 to 560˚C at a rolling speed of 15 m/s without lubrication and quenched in water at an interval of 30ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Recrystallization occurred in the surface regions of the specimen rolled to reduction of 65% at 510˚C, while only recovery occurred in the other regions.
        4,000원
        16.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The particle reinforced composite fabricated by a powder-in sheath rolling (PSR) method was severely. deformed by the accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubricant. The ARBed composite exhibited an ulbricant. grained structure similar to the other ARBed bulky materials. Tensile strength of the composite increased gradually with the number of ARB cycles, but from the 6th cycle it rather decreased slightly. These characteristics of the composite were somewhat different from those of Al powder compact fabricated by the same procedures. The difference in microstructure and mechanical properties between Al powder compact and the composite was discussed
        4,000원
        18.
        2002.05 구독 인증기관 무료, 개인회원 유료
        Machinability improvement by the use of liquid nitrogen in cryogenic machining has been reported in various studies. This has been mostly attributed to the cooling effect of liquid nitrogen. However, No study has been found in discussion on whether liquid nitrogen possesses lubrication effect in cryogenic cutting. This paper presents lubrication mechanism related to chip microstructure. The friction reduction was further reflected In larger shear angle and less secondary deformation in the chip microstructures.
        4,000원
        19.
        2002.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microstructural and mechanical characteristics of P/M 6061 Al alloy subjected to equal channel angular pressing (ECAP) were investigated. The P/M 6061 Al alloy had an intial grain size of approximately . An equiaxed ultra-fine grained structure with the mean grain size of was obtained by four repetitive ECAP at 473 K. The microhardness of P/M 6061 Al alloy was drastically increased from about 40 Hv to 80 Hv by two repetitive ECAP at 373 K. However, the microhardness decreased with increasing ECAP temperature. The tensile stength of as-hot-pressed P/M 6061 Al alloy before ECAP was 95 MPa, whereas it increased to both 248 MPa after two repetitive ECAP at 373 K and 130 MPa after four repetitive ECAP at 473 K. The tensile properties of the ECAPed sample were compared with those of commercial cast 6061-O and 6061-T4 Al alloys.
        4,000원
        20.
        2002.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 6061 Al alloy based composites reinforced with 10 vol% SiC whiskers were prepared by powder metallurgy with the powders having the different sizes, i.e. < and> The composites were subjected to equal channel angular pressing (ECAP) at various conditions and the microstructural changes during ECAP were examined In the composites SiC whiskers were clustered and randomly aligned. The clusters were relatively well distributed in the composite with the smaller initial powder size. After ECAP, the clusters were aligned parallel to flow direction and became smaller. In addition, the shape of clusters was changed from irregular to round. The microstructure of the ECAPed samples were compared with those of the conventionally hot-extruded composites. The uniform microstructure and enhanced microhardness could be obtained by using the powders having the smaller size, decreasing ECAP temperature and repeating ECAP.
        4,000원
        1 2