검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 23

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520oC. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515oC following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.
        4,000원
        2.
        2023.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As a filler metal for lowering the melting point of Ag, many alloy metal candidates have emerged, such as cadmium, with zinc, manganese, nickel, and titanium as active metals. However, since cadmium is known to be harmful to the human body, Cd-free filler metals are now mainly used. Still, no study has been conducted comparing the characteristics of joints prepared with and without cadmium. In addition, studies have yet to be conducted comparing the typical characteristics of brazing filler metals with special structures, and the joint characteristics of brazing filler metals with available frames. In this study, the characteristics of junctions of silver-based intercalation metals were compared based on the type of filler metal additives, using a special structure, a filler metal sandwich structure, to protect the internal base metal. The general filler metal was compared using the structure, and the thickness of the filler metal according to the thickness was reached. A comparison of the characteristics of the junction was conducted to identify the characteristics of an intersection of silver-based brazing filler metal and the effect on joint strength. Each filler metal’s collective tensile strength was measured, and the relationship between joint characteristics and tensile joint strength was explored. The junction was estimated through micro strength measurement, contact angle measurement with the base metal when the filler metal was melted, XRD image observation, composition analysis for each phase through SEM-EDS, and microstructure phase acquisition.
        4,000원
        3.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to its excellent processability, thermal conductivity and high corrosion resistance, copper tubes applied to heat exchangers are being joined through brazing to increase heat exchange efficiency. In order to improve performance, the issue of joint quality of copper tubes, a major member of heat exchangers, is emerging, so research is needed to obtain excellent joint quality of brazing joints that may be damaged. In this study, the quality change of joints according to process variables was studied through induction heating brazing experiments using high frequency. The depth of penetration, which indicates the quality of the junction, was measured, and the center position of the high-frequency electrode and the height of the electrode, which change the location of the heat source applied to the junction, were selected as process variables. Lastly, the thermal image data obtained between the brazing experiments were obtained and the joint quality according to the temperature gradient of the joint was analyzed.
        4,000원
        4.
        2020.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000℃ by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800℃. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575℃ for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.
        4,000원
        6.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In aluminum brazing processes, corrosive flux, which is used in preventing oxidation, is currently raising environmental concerns because it generates many pollutants such as dioxin. The brazing process involving noncorrosive flux is known to encounter difficulties because the melting temperature of the flux is similar to that of the base material. In this study, a new brazing filler material is developed based on aluminum and non-corrosive flux composite powder. To minimize the interference of consolidation aluminum alloy powder by the flux, the flux is intentionally embedded in the aluminum alloy powder using a mechanical milling process. This study demonstrates that the morphology of the composite powder can be varied according to the mixing process, and this significantly affects the relative density and mechanical properties of the final filler samples.
        4,000원
        7.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.
        4,000원
        8.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A capsule is the device for irradiation test of nuclear materials and fuels in HANARO. The instrumentation cables are sealed tightly by brazing at the top of the capsule. In this study, the integrities at the brazing of both Inconel 600 and STS 310 materials were confirmed by tensile test, survey of damage on coating, and measurement of insulation resistance. At tensile test, brazing areas were not damaged but the thermocouples themselves were broken on both the materials. At flame heat test, the coating of STS 310 material was maintained without damage but the brittle fracture on Inconel 600 material was observed. Insulation resistances were confirmed to be satisfactory in case of both the materials. In this analysis, the thermocouple was expanded by 0.81mm on the direction of y-axis and the tube was contracted by 0.57mm on the direction of x-axis. As the result, cracks might be occurred with thermal stresses. EDX spectrum analysis showed that the BAg-1 filler metal formed a thin reaction layer on the surface of brazed metal.
        4,000원
        13.
        2006.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The brazing adhesion properties of Ag coated W-Ag electric contact on the Cu substrate have been investigated in therms of microstructure, phase equilibrium and adhesion strength. Precoating of Ag layer ( in thickness) on the contact material was done by electro-plating method. Subsequently the brazing treatment was conducted by inserting BCuP-5 filler metal (Ag-Cu-P alloy) layer between Ag coated W-Ag and Cu substrate and annealing at in atmosphere. The optimum brazing temperature of was semi-empirically calculated on the basis of the Cu atomic diffusion profile in Ag layer of commercial electric contact produced by the same brazing process. As a mechanical test of the electric contact after brazing treatment the adhesion strength between the electric contact and Cu substrate was measured using Instron. The microstructure and phase equilibrium study revealed that the sound interlayer structure was formed by relatively low brazing treatment at . Thin Ag electro-plated layer precoated on the electric contact ( in thickness) is thought to be enough for high adhesion strength arid sound microstructure in interface layer.
        4,000원
        17.
        1999.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ag-Cu-Ti 삽입금속을 이용하여 제조된 AlN/Cu와 AlN/W 활성금속브레이징 접합체의 잔류응력을 유한요소법으로 탄성 및 탄소성 해석을 행하여 그 결과를 접합강도 측정 결과와 파단 거동 관찰 결과와 비교, 분석하였다. 최대 잔류 주응력의 크기는 AlN/W 접합체보다 모재간 열팽창계수 차이가 큰 AlN/Cu 접합체에서 더 크게 나타났으며, 접합계면에 인접한 AlN 세라믹스 자유표면에 인장 성분의 응력집중이 확인되었다. 모재와 삽입금속의 탄소성 변형을 모두 고려할 경우, AlN/Cu 접합체의 경우 연질의 삽입금속에 의해 최대 잔류 주응력이 감소하여 소성변형에 의한 응력완화 효과가 있음을 확인하였으나, 100μm 이상으로 삽입금속 두께를 증가시키더라도 잔류 주응력의 크기는 더 이상 크게 감소하지 않았다. 측정된 최대 접합강도는 AlN/Cu와 AlN/W 접합체에서 각각 52 MPa와 108 MPa이었으며, 파단 형태는 AlN/Cu 접합체는 AlN 자유표면으로부터 AlN 내부로 큰 각도를 이루면 진행되는 돔형의 파단이, AlN/W 접합체에서는 접합계면의 삽입금속층을 따라 AlN 측에서 파단이 일어나는 형태를 보였다.
        4,000원
        18.
        1997.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-brazed layer between the sintered-cam(Fe-5Cr-lMo-0.5P-2.5C, wt%) and seamless steelpipe(0.25-0.35C, 0.3-1.0 Mn, bal Fe, wt%) in the camshaft shows a columnar structure of -phase growing from the steel pipe. Liquid phase sintered 60Fe-40Cu alloys are carburized to simulate the brazing process giving rise to the columnar growth. Liquid film migrations and columnar growth of -grains are observed in the carburized regions. The -grains grow in the same direction as the C-diffusion. Fe-solubility in the liquid of carburized region is higher than in the uncarburized by about 0.3 at%. The columnar growth is driven by the gradient of the supersaturated Fe-solute in the liquid between two adjacent -grains.
        4,000원
        1 2